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Long-range Rydberg interactions, in combination with electromagnetically induced transparency
(EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions
are widely tunable and controllable. Such control can be applied to both coherent and dissipative
interactions, which provides the potential for generating novel few-photon states. Recently it has
been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or
stronger than two-body interactions. In this work, we study three-body scattering loss for Rydberg-
EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-
body wavefunction and analytical estimates based on Fermi’s Golden Rule strongly suggest that the
observed features in the outgoing photonic correlations are caused by the resonant enhancement of
the three-body losses.

Photons coherently coupled to highly excited atoms in
the form of dark-state Rydberg polaritons are a versatile
system for engineering strong interactions between pho-
tons. Recent experiments have shown single-photon non-
linearities [1–7], single-photon transistors [8–10], quan-
tum gates [11–14], as well as the observation of strongly-
correlated photon states [15–17]. Depending on the con-
ditions used to generate the polaritons, the interactions
can be coherent or dissipative, with controllable inher-
ent multi-body character [18–24]. The study of few-body
systems with long-range interactions can help to engineer
more complex many-body quantum systems and under-
stand their properties and potential limitations due to
loss, decoherence, or recombination. Realizing precise
and reliable control of three-body effects opens the door
to rich phenomena, such as the universality of Efimov
states [25], the purification of a quantum gas [26], and the
emergence of strongly-correlated photonic states [16, 17],
including fractional quantum Hall states [27, 28]. Dissi-
pative interactions find applications in quantum comput-
ing and state preparation [29, 30], and in passive quan-
tum error correction [31–33]. In particular, three-body
dissipative interactions enable preparation of strongly-
correlated [34] and topological phases [35].

Three-body effects between Rydberg polaritons can be
strong [16, 17, 21–23], distinguishing them from the usu-
ally weak three-body forces [36] observed with ultracold
atoms and molecules near their ground state [34, 37–39].
The three-body Rydberg polariton system has been ex-
plored experimentally in the dispersive regime [16, 17].
However, to our knowledge, there is no theoretical or
experimental work studying dissipative three-body inter-
actions and their tunability to date.

Here, we analyze tunable three-body loss of Rydberg
polaritons at high optical density, where nonperturbative

effects are strong. We study experimentally and theoreti-
cally, the tunability of the relative strength of three-body
loss versus two-body loss, which is indirectly probed by
measuring two- and three-photon correlation functions.

Figure 1(a) shows the atomic-level configuration for
Rydberg-EIT. The ground state, |G〉, of an ensemble of
atoms is coupled to an intermediate state, |P 〉, by a quan-
tum probe light with a collective coupling strength, g. A
classical control field with Rabi frequency, Ωc, couples
|P 〉 to a Rydberg state, |S〉. The Hamiltonian describing
the propagation of a single excitation is [19, 40]

H =

 cq g 0
g −∆− δs Ωc/2
0 Ωc/2 −∆s

 , (1)

in the basis of {E , P, S}, where E , P and S are the
wavefunctions of the photonic component, intermediate-
and Rydberg-state collective spin excitations, respec-
tively [40] (~ = 1). The complex detunings ∆ = δ+ iΓ/2
and ∆s = δs + iγs/2 take into account the decay rates
of the excited states, cq corresponds to the kinetic en-
ergy of the photon in the rotating frame (such that the
incoming probe photons have zero energy), where c is
the speed of light, and q is the probe photon momentum.
Diagonalization of Eq. (1) gives rise to three polariton
eigenstates. For small δs, the photons propagate through
the medium as dark-state polaritons: a hybrid photon-
atom excitation with a negligible admixture of the lossy
intermediate state [41]. This coupling maps the strong
Rydberg interaction onto the photons [18, 42].

Fig. 1(c) depicts the energies of the dark, D, bright
lower, L, and bright upper, U , polaritons (depicted by
ωD(q), ωL(q), and ωU (q), respectively). The middle
branch, D, is continuously connected to the dark state;
however, for large momenta |q|, it becomes lossy.
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FIG. 1. (a) Atomic structure: A weak probe, with col-
lectively enhanced single-photon coupling g, and a clas-
sical field, with Rabi frequency Ωc, couple the ground
state, |G〉 =

∣∣5S1/2, F = 2,mF = 2
〉
, to the Rydberg state

|S〉 =
∣∣82S1/2,mJ = 1/2

〉
via an intermediate state |P 〉 =∣∣5P3/2, F = 3,mF = 3

〉
. b) Experimental setup: The probe

and control beams are overlapped along the propagation axis.
After exiting the atomic medium, the probe beam is sent to
a generalized Hanbury Brown and Twiss setup to measure
the photon correlation functions. (c) Dispersion of polaritons
in the limit Γ � |δ|, with δ/(2π) = 25 MHz, δs/(2π) = 0,
Ωc/(2π) = 23.5 MHz, for a homogeneous cloud of length
L = 4.2σz [15], with ωc ≡ Ω2

c/4|∆| and kc ≡ ωc/vg ≈ g2/c|∆|.
The black curve is the dark-state branch (D), while the blue
and green curves are the bright states (U and L). The di-
agram depicts the allowed three-body loss process for three
polaritons initially near the EIT resonance at ωj = qj = 0
(j = 1, 2, 3 labels the three polaritons). ω+ is the en-
ergy where ωD and ωU become approximately flat. (d) Al-
lowed final momenta q1 and q2 for the three-body loss with
q3 = −q1− q2. Only the process depicted in (c) is relevant for
δs ≈ 0. For the plotted momenta, there is no two-body loss
process allowed because there are no final states with q1 = 0
or q2 = 0.

For small |δs| � ωc ≡ Ω2
c/4|∆|, two-body scattering

processes where one or both of the incoming dark po-
laritons become lossy are strongly suppressed [19], see
Fig. 1(d) illustrating the DD → DU suppression. This
suppression comes from the fact that, for δs = 0, incom-
ing q = 0 polaritons are not allowed to scatter to any
bright channel due to energy and momentum conserva-
tion.

However, for three photons, the scattering to lossy
branches is allowed by conservation laws. The interplay
of the shape of the interactions and the dispersion re-
lation can lead to resonant enhancement of three-body
loss. Both the interaction potential and the dispersion
relation can be tuned using Ωc, δ, and δs, which we ex-

plore experimentally and theoretically.
We generate Rydberg polaritons in a cold, optically

trapped cloud of 87Rb atoms using the three states |G〉 =∣∣5S1/2, F = 2,mF = 2
〉
, |P 〉 =

∣∣5P3/2, F = 3,mF = 3
〉

and |S〉 =
∣∣82S1/2,mJ = 1/2

〉
(see supplemental[43]).

The probe beam addressing the |G〉-|P 〉 transition has a
3.3 µm-waist and coupling strength g/(2π) ' 103 MHz.
The average incoming photon rate is Rin ' 3µs−1, so the
likelihood of more than three photons in the cloud is neg-
ligible. The control beam coupling |P 〉 − |S〉 is counter-
propagating to the probe [Fig. 1(b)] with a 19 µm-waist
and Ωc/(2π) = 23.5 ± 1.5 MHz. The ensemble with
' 105 atoms at 10 µK has an RMS axial length of
σz = 42± 4 µm. The optical depth is OD = 37± 4, and
we measure the linewidths to be Γ/(2π) = 7 ± 1 MHz
and γs/(2π) = 0.4± 0.1 MHz [44].

The impact of interactions among n polaritons can
be characterized by the n-photon correlation functions,
g(2)(τ) and g(3)(τ1, τ2) for n = 2 and n = 3, respec-
tively. We measure these correlations by detecting the
relative temporal delay, τ , of transmitted photons using
three single-photon avalanche photodetectors (SPAD)
[see Fig. 1(b)]. To characterize the impact of three-body
loss relative to two-body effects at low photon rates, we
use the connected correlation [17, 21]

η3(τ1, τ2) = g(2)(τ1)+g(2)(τ2)+g(2)(τ2−τ1)−g(3)(τ1, τ2)−2.
(2)

For dominant two-body loss, one has η3(0, 0) < 0, be-
cause there is a high probability of absorbing at least
one out of two or three incoming photons so g(2)(0) and
g(3)(0, 0) are suppressed (strong two-body repulsion [7]
has a similar effect).

On the other hand, if two-body loss is small and dis-
persive, so two-body interactions are weak or attractive
such that g(2)(0) ≥ 1, while three-body loss is strong,
η3(0, 0) > 0. Therefore, we use a positive value of η3(0, 0)
as a signature of strong three-body losses. Figure 2
shows the measured second-order, third-order, and con-
nected third-order correlation functions for two parame-
ter choices corresponding to η3(0, 0) < 0 [Fig. 2(a-c)] and
η3(0, 0) > 0 [Fig. 2(d-f)].

Figure 3(a-c) shows the measured correlation func-
tions, g(2)(0), g(3)(0, 0), and η3(0, 0), as a function of
δ and δs, at fixed Ωc. The region where η3(0, 0) >
0 (indicative of dominant three-body loss) occurs is a
roughly linear band in δ-δs space with a negative slope.
Figure 3(d-f) shows g(2)(0), g(3)(0, 0), and η3(0, 0) ob-
tained by numerically solving the Schrödinger equation
for the two- and three-polariton wavefunctions propa-
gating through the Rydberg-EIT medium using param-
eters similar to the experimental values [45]. We find
good qualitative agreement between the numerical cal-
culation and experiment: we reproduce the antibunching
to bunching behavior in g(2)(0) and g(3)(0, 0), and the
resonant-like feature of three-body loss in η3(0, 0). We
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FIG. 2. (a-c) Measured (a) g(2)(τ), (b) g(3)(τ1, τ2), and (c)
η3(τ1, τ2) for the experimental parameters indicated in the
text with δ/(2π) = 15 MHz and δs/(2π) = −2 MHz, where
η3(0, 0) < 0. (d-f) Measured (d) g(2)(τ), (e), g(3)(τ1, τ2), and
(f) η3(τ1, τ2) for δ/(2π) = 22.5 MHz and δs/(2π) = 2 MHz,
where η3(0, 0) > 0.

note that limitations from our numerical description arise
from using a hard-sphere approximation for the interac-
tion potential, possibly contributing to the discrepancy
between experimental and numerical results. Other pos-
sible sources of discrepancy include experimental drifts
and the presence of contaminant states [46]. The latter
causes a bunching feature for long times in the correla-
tion functions [47]. Including a microscopic description of
the contaminants would greatly increase the complexity
of the numerical and theoretical model [48].

Rydberg atoms interact via the van der Waals poten-
tial V (r) = C6/r

6. The effective interaction between two
dark-state polaritons (after integrating out bright-state
polaritons) is [19]

Ve(ω, r) =
V (r)

1− χ̄(ω)V (r)
. (3)

Here, ω is the total energy of the incoming polaritons
and χ̄ characterizes the saturation of the potential at dis-
tances less than the blockade radius rb = (C6|χ̄|)1/6 [19]

FIG. 3. (a)-(c) Experimental data of the second-order,
g(2)(0), third-order, g(3)(0, 0), and connected, η3(0, 0), cor-
relation functions with Ωc/(2π) = 23.5±1.5 MHz, for a cloud
with OD=37±4 and σz = 42± 4 µm. (d)-(f) Numerical sim-
ulations for the same correlation functions. Parameters used
for the simulations are: OD = 37, Ωc/2π = 25 MHz, Γ/2π = 7
MHz, γ/2π = 0.3 MHz and σz = 40 µm. Regions with
η3(0, 0) > 0 indicate excess of three-body loss with respect
to two-body loss. The dashed lines indicate enhanced three-
body loss predicted by the Fermi’s Golden Rule calculation
(see text).

and is given by

χ̄(ω) =
−Ω2

c + 4∆̃2 + 6∆̃ν + 2ν2

2(∆̃ + ν)
(
ν(2∆̃ + ν)− Ω2

c

) (4)

with ν = ω + 2∆s and ∆̃ = δ + iΓ/2 − iγs/2. Since
γs � Γ, we neglect the difference between ∆̃ and ∆ =
δ + iΓ/2. In our experiment, rb ranges from 7 µm to
10 µm. Note that with decreasing δ, the effect on g(2)(0)
of the two-body dissipation in Ve (coming from Γ via χ̄)
becomes stronger, leading—in combination with compet-
ing attractive dispersive interactions—to the decrease of
g(2)(0), see Fig. 3(a, d).

Using Ve, we analyze the three-body scattering rate β,
for incoming dark-state polaritons near EIT resonance
due to processes like the one indicated in Fig. 1(c). We
perform our analysis in the limit of zero dissipation and
then analytically continue to finite Γ and γs.

The lowest-order diagrams contributing to β are
second-order in Ve. The conservation of energy and mo-
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FIG. 4. Lowest-order diagrams that contribute to three-
body loss. The black lines indicate polaritons in the dark
branch, and the blue lines indicate polaritons scattered to
the upper-bright branch. Dotted-wiggly lines indicate the ef-
fective pairwise interactions. We use the full propagator for
the S-states in the virtual state (black-arrowed line), which
includes contributions from all branches. Additionally, five
similar diagrams (total of six) for both (a-b) are obtained by
permuting inputs and outputs.

mentum puts additional restrictions on the available open
scattering channels. In Fig. 4(a-b), we show the leading
contributions to β which involve scattering to DDU with
D gaining large q and becoming lossy. We neglect other
allowed processes, such as scattering to DUL due to the
weaker effective interactions involving these bright po-
laritons because of their small Rydberg amplitude.

The incoming polaritons have ωD(q0) = 0. In general,
the incoming momentum q0 6= 0 for δs 6= 0, but, for
brevity, we show the expressions for δs = 0 and q0 = 0.
Within a Fermi’s Golden Rule calculation, the diagrams
in Figs. 4(a) and (b) contribute, respectively, the first and
second terms inside the absolute value in the expression
for β:

β =
18

π

∫
dq1 dq2|S0

D|6|S
q1
D |

2|S−q1−q2
D |2|Sq2U |

2

×
∣∣∣Ṽq2 [0]Gss[−q2,−ωU (q2)]Ṽq1 [−ωU (q2)]

+ Ṽq1+q2 [0]Gss[q1+q2,−ωD(−q1−q2)]Ṽq2 [−ωD(−q1−q2)]
∣∣∣2

× δ (ωU (q2) + ωD(q1) + ωD(−q1 − q2)) . (5)

Here, Ṽq[ω] is the Fourier transform of Ve(ω, r), Gss is
the single-body propagator projected onto the Rydberg
state, ωU (q) is the dispersion for the upper-bright branch,
and Sqν is the overlap of the Rydberg state with a polari-
ton at momentum q on branch ν ∈ {D,U} (see supple-
mental [43]).

The behavior of Eq. (5) depends on the interaction
strength, which can be quantified by ϕ = |rb/

√
χ̄/m|,

where m = −2g4/∆Ω2c2. For |δ| � Ωc/2, ϕ simplifies to
ODbΓ/4|∆| (which, up to a constant factor, is the phase
a stationary Rydberg excitation imprints on a passing
polariton [18]), where ODb = ODrb/

√
2πσz is the optical

depth per blockade radius corresponding to the maximal
density of a Gaussian cloud with RMS σz. In our experi-
ment, ODb is < 4, thus for the detunings considered here
ϕ < 0.3.

In our experimental regime, with moderately strong
interactions (ϕ < 1), we can simplify Eq. (5) by not-
ing that the dispersions for ωD and ωU saturate to ω+

(see [43]) in the relevant range of the momentum trans-
fer ∼ 1/rb being larger than the characteristic threshold
momentum kc ≡ ωc/vg, where vg is the group velocity
[see Fig. 1(c,d)].

Then, the second term in Eq. (5) vanishes because
Ṽq2 [−ωD(−q1 − q2)] ≈ Ṽq2 [2ω+] → 0, so β simplifies
to [49]

18

π

∫
dq

1

vg(−2ω+)

∣∣∣Ṽq[0]Gss[q2 →∞,−ω+]Ṽq[−ω+]
∣∣∣2 ,
(6)

which has a complicated dependence on the experimental
parameters. We concentrate on qualitative features of
Eq. (6) to understand the behavior of β. For Ωc � |δ|,
the scattering rate is reduced to β ∝ ϕr2b Ω2

c/δ. Here, β
increases with ϕ, but does not feature any resonances as
a function of δ.

In contrast, for Ωc ∼ δ, Eq. (6) could have resonant
behavior for two reasons. First, the density of outgoing
states, characterized by 1/vg(−2ω+), could diverge as a
function of δ. Second, the interaction vertices Ṽq[0] or
Ṽq[−ω+], which are inversely proportional to χ̄(0) and
χ̄(−ω+), could have a resonance due to the vanishing
value of χ̄. This divergence in the interaction vertices
will be smoothed out for finite Γ, γs, but will still have a
significant impact on β. We find that the divergence in
the density of states is nearly canceled by the simultane-
ous vanishing of Ṽq[−ω+] (see supplemental [43]), so the
density of states does not contribute to the resonance.

The interaction vertices Ṽq[0] and Ṽq[−ω+] diverge for
δ approaching specific respective detunings δ0 and δ+
where χ̄(0) and χ̄(−ω+) vanish, respectively. In the
experimentally relevant limit |δs| � Ωc, |∆|, the ex-
pressions for δ0 and δ+ simplify to δ0 = 1

2Ωc − 3
2δs,

δ+ ≈ 0.7Ωc − 0.8δs. Fig. 3(f) shows these dependen-
cies: the gray-dotted line depicts δ+, whereas the white-
dotted line depicts δ0. The decay Γ leads to such signifi-
cant broadening of the two resonances that the two peaks
are no longer distinguishable, leading to a single, effec-
tive resonant feature for β. In Fig. 3(f), the pink-dashed
curve depicts the value of δ for which |β| is maximal for
a fixed δs.

The maximal curve is closer to the δ+ line because,
for our parameters, this resonance is stronger than the
δ0 resonance. The resulting overall resonance is a three-
body effect because it predominantly comes from the δ+
resonance, which is not present for the two-body scatter-
ing. In the vicinity of a divergent 1/χ̄, the interaction
strength could become large and negative, leading to a
second bound state, which would happen for ϕ ≈ 3 [19].
This nonperturbative effect could hinder the applicability
of the Fermi’s Golden Rule. However, since in our sys-
tem ϕ < 0.3 (due to dissipation), we neglect the second
bound state.

The measured three-body scattering probes nonper-
turbative processes, even in the moderately interacting
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regime for ϕ < 1. In this moderately interacting regime
Fermi’s Golden Rule calculation is approximate—it in-
volves a resummation strategy to perform perturbation
theory in the effective two-body interaction. This ap-
proximation likely contributes to the discrepancy be-
tween our perturbative analysis and numerical simula-
tions. Similar to the problem of describing Efimov bound
states [25], nonperturbative effects can be more accu-
rately captured by introducing an effective three-body
interaction between dark-state polaritons [16, 21, 22].
These N -body interactions, however, are a momentum
and frequency-dependent quantity in free space, whose
full description requires the exact solution to the N -
body problem. Steps developing an approximate, con-
sistent renormalization group treatment of three-body
forces have recently been made by analyzing single-mode-
cavity setups [50].
Summary & Outlook— We demonstrate the ability

to tune Rydberg-polariton interactions leading to reso-
nantly enhanced three-body losses. These interactions
are analyzed using the few-body auto-correlation func-
tions of the outgoing field. Our numerical simulations
reproduce the observed features with good qualitative
agreement. We describe the tunable losses based on a
Fermi’s Golden Rule treatment of the scattering process
of three dark-state polaritons to two lossy dark-state po-
laritons and a bright-state polariton. One way of increas-
ing the overall strength of all involved interactions and
three-body loss is by increasing the optical depth per
blockade radius. Also, decreasing the dissipation from
the decay of the intermediate and Rydberg states would
make the resonant feature stronger and narrower since
these decays lead to the imaginary parts of the poten-
tials broadening the resonances. This can be achieved
by simultaneously increasing the Rabi frequency and the
single-photon detuning such that the resonance is still
present, but suppressing the dissipative part of the in-
teractions as Γ/|δ|. However, the optical power needed
to achieve strong enough Rabi frequencies can be exper-
imentally challenging. Furthermore, nonperturbative ef-
fects will be enhanced (like the appearance of a second
bound state), making the theoretical analysis more com-
plex. Pushing further into this regime would enable the
production of a novel three-photon number filter.

Our work demonstrates the tunability of Rydberg sys-
tems, showing promising directions in the study and con-
trol of few and many-body physics of strongly interacting
photons, with potential applications in quantum infor-
mation, quantum simulation, and exploration of exotic
phases of matter with controllable interactions. For ex-
ample, another bound state could emerge with a higher
ODb [19]; these additional bound states could be used as
another tuning knob to increase three-body forces. Ex-
tending the system to three dimensions and altering the
polariton effective longitudinal and transverse mass and
interactions, could result in photonic Efimov trimers [23].

Another exciting direction involves studying unconven-
tional topological and spin-liquid phases with three-body
forces, especially in two dimensions [51].
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