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The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system, nn →
ppe−e−, constitutes a key building block for nuclear-structure calculations of heavy nuclei employed
in large-scale 0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-
neutrino exchange, a systematic analysis in chiral effective field theory shows that already at lead-
ing order a contact operator is required to ensure renormalizability. In this work, we develop a
method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula
for electromagnetic contributions to hadron masses) and validate the result by reproducing the
charge-independence-breaking contribution to the nucleon–nucleon scattering lengths. Our central
result, while derived in dimensional regularization, is given in terms of the renormalized amplitude
Aν(|p|, |p′|), matching to which will allow one to determine the contact-term contribution in reg-
ularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a
crucial uncertainty in the interpretation of searches for 0νββ decay.

INTRODUCTION

Neutrinoless double β decay is by far the most sensi-
tive laboratory probe of lepton number violation (LNV).
Its observation would prove that neutrinos are Majo-
rana fermions, constrain neutrino mass parameters, and
provide experimental validation for leptogenesis scenar-
ios [1–4]. If 0νββ decay is caused by the exchange of
light Majorana neutrinos, as we consider here, the am-
plitude is proportional to the “effective” neutrino mass
mββ =

∑
i U

2
eimi, where the sum runs over light neutrino

masses mi and Uei are elements of the neutrino-mixing
matrix. 0νββ is a complicated process involving parti-
cle, nuclear, and atomic physics and the interpretation of
experimental limits [5–10], and even more so of potential
future discoveries, is hampered by substantial uncertain-
ties in the calculation of hadronic and nuclear matrix
elements [11–19].

Chiral effective field theory (EFT) [20–25] plays a key
role in addressing these uncertainties. Nuclear struc-
ture, ab-initio calculations based on chiral-EFT inter-
actions [26–28] have recently become available for some
phenomenologically relevant nuclei [29–31] and the issue
of gA quenching in single β decays has been resolved as
a combination of two-nucleon weak currents and strong
correlations in the nucleus [32–34]. In addition, the few-
nucleon amplitudes used as input in nuclear structure cal-
culations have been scrutinized in chiral EFT for various
sources of LNV [35–44]. In the context of light-Majorana-
neutrino exchange, using naive dimensional counting, the
leading contribution in the chiral-EFT expansion arises
from a neutrino-exchange diagram, in which the LNV
arises from insertion of the ∆L = 2 effective neutrino

mass mββ (see diagram (A) in Fig. 2). In analogy to the
nucleon–nucleon (NN) potential itself [23–25] and exter-
nal currents [45], this conclusion no longer holds when
demanding manifest renormalizability of the amplitude,
which requires the promotion of an nn→ ppe−e− contact
operator to leading order (LO) [40, 43] (see diagram (D)
in Fig. 2), encoding the exchange of neutrinos with en-
ergy/momentum greater than the nuclear scale. The size
of this contact operator is currently unknown, leading
to an additional source of uncertainty in the interpreta-
tion of 0νββ decays besides the nuclear-structure ones.
In this work we present a first estimate of the complete
nn→ ppe−e− amplitude including this contact-term con-
tribution. For related progress towards a calculation of
this amplitude based on lattice gauge theory, we refer to
the recent literature [46–52] (see Ref. [53] for a large-Nc
analysis).

The hadronic part of the light-Majorana-neutrino-
exchange amplitude has the structure

Aν ∝
∫

d4k

(2π)4

gµν
k2 + iε

∫
d4x eik·x〈pp|T{jµw(x)jνw(0)}|nn〉

(1)
and is ultimately determined by the two-nucleon matrix
element of the time-ordered product T{jµw(x)jνw(0)} of
two weak currents. Similar matrix elements arise in elec-
tromagnetic contributions to hadron masses or scattering
processes, replacing the weak current by the electromag-
netic current jµem(x). In the case of hadron masses, the
Cottingham formula [54, 55] relates the electromagnetic
splitting to the contraction of the forward Compton scat-
tering amplitude with a massless propagator, see Fig. 1
and Eq. (1). In this case, at least the elastic contribu-
tion to the mass (for which the hadronic intermediate
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FIG. 1: Forward scattering amplitude (left) and self-energy
contraction (right). The solid line refers to the hadronic states
(pion, nucleon, two-nucleon), the gray blob to the nonpertur-
bative amplitude, and the wiggly lines to the massless medi-
ator attached to the currents (photon or neutrino).

state is the same as the external ones) follows unam-
biguously from the contraction of the scattering ampli-
tude. Since this is precisely the same structure as re-
quired for the light-Majorana-neutrino-exchange contri-
bution to the 0νββ decay nn→ ppe−e−, the novel idea of
this paper is to constrain the corresponding amplitude by
generalizing the Cottingham approach to the two-nucleon
system, and then determine the contact-term contribu-
tion by matching to chiral EFT.

In the application of the Cottingham approach to the
pion and nucleon mass difference, the by far dominant
contribution arises from elastic intermediate states: the
pion-pole contribution gives more than 80% of the pion
mass difference [56–60], and the nucleon pole provides the
bulk of the electromagnetic part of the proton–neutron
mass difference mel

p−n = 0.75(2) MeV. In this case, there
is a tension between the estimate of the inelastic con-
tributions in lattice QCD, minel

p−n = 0.28(11) MeV [61–

63], and from nucleon structure functions, minel
p−n =

−0.17(16) MeV [64–67], but in either case the elastic es-
timate is accurate at the 30% level.

The main complication in the generalization to 0νββ
decay is due to the two-particle nature of initial and
final states and the ensuing proliferation of kinematic
variables and scalar functions in a Lorentz decomposi-
tion of the amplitude. Accordingly, we do not attempt a
strict derivation of the elastic contribution via a disper-
sion relation, but include the most important interme-
diate states in close analogy to the results for the pion
and nucleon Cottingham formula, as described in more
detail below. To assess the validity and accuracy of the
approach, we also consider the two-nucleon matrix ele-
ment with two electromagnetic currents, which controls
charge independence breaking (CIB) in the NN scatter-
ing lengths. In this case, comparison with data allows us
to confirm the expectation of an accuracy around 30% if
only elastic contributions are kept, as suggested by the
proton–neutron mass difference. A determination at this
level already has a major impact in bounding the size of
the contact-term contribution to 0νββ decay.

MATCHING PROCEDURE

The integration over the neutrino momentum k in
Eq. (1) can be split into several regions. Given the
nonrelativistic nature of the process, we always perform
the k0 integral via the residue theorem, and analyze the
relevant momentum regions in terms of the space-like
modulus |k|. We introduce a low-energy region |k| < Λχ,
a hard region |k| > Λ, and an intermediate region
Λχ < |k| < Λ, where Λ denotes the scale at which an op-
erator product expansion (OPE) becomes applicable and
Λχ the breakdown scale of chiral EFT. The basic idea in
generalizing the Cottingham approach to the NN system
then amounts to interpolating between the low-energy
EFT and the high-energy OPE constraints, by using in-
formation on the momentum dependence of the pion and
nucleon form factors as well as the NN scattering ampli-
tude. This strategy captures the analog of the dominant
elastic contributions to the Cottingham formula for the
pion and nucleon mass differences, but does introduce
some model dependence in the intermediate region. To
estimate the uncertainty it is thus critical to be able to
validate the approach with data, as we will demonstrate
below in terms of CIB in the NN scattering lengths. In
practice, we express our result for the full amplitude as

Afull
ν =

∫ ∞
0

d|k| afull(|k|) = A< +A>, (2)

A< =

∫ Λ

0

d|k| a<(|k|), A> =

∫ ∞
Λ

d|k| a>(|k|),

where A< subsumes the low- and intermediate-
momentum regions, A> denotes the short-distance
contribution, and the two are separated by the scale Λ
where the OPE behavior is expected to set in. In the final
step, we match the EFT description to the full amplitude

AEFT
ν = A< +A>, (3)

which determines the contact-term contribution in the
MS scheme employed in the EFT calculation.

PION MASS DIFFERENCE

To illustrate this matching procedure, we first reformu-
late the Cottingham formula for the pion mass difference
in terms of our matching variable |k| instead of the Wick-
rotated four-momentum kE typically considered in the
literature [56–60]. In this case, the matching proceeds in
terms of the low-energy constant Z, which determines,
at LO, the pion mass difference

Z =
M2
π± −M

2
π0

2e2F 2
π

= 0.81. (4)
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The elastic contribution to the Cottingham formula gives

Zel =
3i

2F 2
π

∫
d4k

(2π)4

[FVπ (k2)]2

k2 + iε

=
3

32π2F 2
π

∫ ∞
0

dk2
E

[
FVπ (−k2

E)
]2

=
3M2

V

32π2F 2
π

, (5)

where, for the pion vector form factor, the simple ap-
proximation FVπ (k2) = M2

V /(M
2
V − k2) with MV = Mρ

has been inserted. In our matching procedure, the low-
energy contribution is instead identified by introducing a
cutoff in |k|, which leads to

Z< =
3

16π2F 2
π

∫ Λ

0

d|k| |k| (ωV − |k|)
2(2ωV + |k|)
ω3
V

, (6)

with ωV =
√
M2
V + |k|2. For Λ → ∞ this expression

agrees with Eq. (5). For our application, the ρ-pole ap-
proximation for FVπ is sufficient, but could be extended
by introducing a dispersive representation [68], whose
Cauchy kernel would be treated in analogy to the vector-
meson propagator above, via the residues in the k0 inte-
gration. Second, we find

Z> =
3αs(µ)gππLR(µ)

16π

∫ ∞
Λ

d|k| 1

|k|3
, (7)

with coefficient gππLR = (4πFπ)2ḡππLR, ḡππLR = 8.2 at MS
scale µ = 2 GeV [69] (see Refs. [70, 71] for the OPE
contribution in the nucleon case). At scale Λ = 2 GeV
we find for the sum Z = Z< + Z> = 0.60 + 0.03 = 0.63,
which for Λ → ∞ approaches Z = 0.67. The deficit to
Eq. (4) is understood in terms of inelastic contributions
from axial-vector intermediate states [56–60], which
provides another estimate of the error incurred by only
considering elastic contributions.

CONTACT TERM IN 0νββ DECAY

The nn → ppe−e− amplitude in chiral EFT takes the
form

AEFT
ν = AA +AB +AC +AD, (8)

where the four terms correspond to the topologies in
Fig. 2, and renormalization of the divergence in AC
requires the LO contact term AD. For the match-
ing, only these latter two topologies become relevant.
In particular, only the ultraviolet singular part of the
C topology—i.e., the one involving noninteracting two-
nucleon propagators—enters the matching condition,
which can be expressed in terms of dimensionless am-
plitudes as

Ā<,sing
C + Ā>C = Āsing

C (µχ) + 2C̃1(µχ). (9)

The left-hand side refers to the full amplitude, separated
into momentum regions in analogy to Z≶ above, while

(A) (B)

(D)(C)

FIG. 2: LO topologies for 0νββ: the thick solid lines denote
nucleons and the oriented ones leptons (internal neutrino and
external electrons). The squares denote LNV vertices. The
diagrams for the electromagnetic current are obtained by re-
placing the internal neutrinos by photons, omitting the ex-
ternal electrons, and adding an additional topology with the
internal neutrinos replaced by pions. In the full theory, the
EFT vertices, here denoted by gray circles and diamonds, are
supplemented by the appropriate form factors and scattering
amplitudes that capture the momentum dependence of the
elastic NN intermediate-state contributions. Iterations of the
NN strong Yukawa and short-range interactions (diamonds)
are not shown as they are irrelevant for the matching analysis.

the right-hand side gives the amplitude in chiral EFT
including the contact term C̃1 at MS scale µχ (we use
here the notation of Ref. [43]). The explicit expressions
are

Ā<,sing
C =

∫ Λ

0

d|k| a<(|k|), Ā>C =

∫ ∞
Λ

d|k| a>(|k|),

Āsing
C (µχ) = −1 + 2g2

A

2
+

∫ µχ

0

d|k| aχ(|k|), (10)

with integrands

a<(|k|) = −r(|k|)
|k|

θ(|k| − 2|p|)

×
[[
gV (k2)

]2
+ 2
[
gA(k2)

]2
+

k2
[
gM (k2)

]2
2m2

N

]
,

a>(|k|) =
3αs(µ)

π
ḡNN1 (µ)

F 2
π

|k|3
,

aχ(|k|) = −(1 + 2g2
A)

1

|k|
θ(|k| − 2|p|), (11)

where gV,A,M (k2) refers to the appropriate nucleon form
factors in analogy to FVπ (k2) above, ḡNN1 (µ) is the two-
nucleon matrix element of the local operator controlling
the short-distance behavior of T{jµw(x)jνw(0)}, and p de-
notes the momentum of the incoming nn pair. In ad-
dition, compared to the pion mass example, there is a
new source of momentum dependence originating from
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the NN scattering amplitude itself, parameterized here
in terms of r(|k|). At LO in chiral EFT rLO(|k|) = 1,
with corrections that, in pionless EFT, can be identi-
fied with the effective range r0, rNLO

/π (|k|) = 1− r0|k|/π.

In practice, we have evaluated r(|k|) using NLO chiral
EFT as well as the NN potentials from Refs. [72–74],
see Ref. [75] for more details. For the nucleon form fac-
tors simple dipole parameterizations are sufficient, with
the main uncertainty arising from the axial-vector scale,
which we take as ΛA = 1.0(2) GeV to match the uncer-
tainty for the axial radius quoted in Ref. [76]. The ma-
trix element ḡNN1 (µ), expected to be O(1), is presently
unknown, but in view of the large corresponding pion
matrix element ḡππLR = 8.2 we take ḡNN1 ∈ [−10, 10]. The
impact on the numerical analysis remains minor, reflect-
ing the stability of the result upon variation of Λ, as long
as Λ > 1 GeV. The functions aχ,<,>(|k|) determining the
NN (elastic) contribution to the amplitude are shown in
Fig. 3. Finally, the main uncertainty is expected to arise
from inelastic contributions. To estimate their impact,
we have considered the simplest diagram with an NNπ
cut, which affects the contact term at the level of 0.1–
0.35, motivating an inelastic uncertainty of 0.5. Taking
everything together, we quote

C̃1(µχ = Mπ) = 1.32(50)inel(20)r(5)par = 1.3(6) (12)

as our main result for the contact term at MS scale
µχ = Mπ. The uncertainties refer to the inelastic con-
tributions, r(|k|), and parametric uncertainties (nucleon
form factors and ḡNN1 ), respectively. The final uncer-
tainty is dominated by inelastic effects and implies a rel-
ative precision of (20–30)% on the renormalized singular

amplitude Āsing
C + 2C̃1 in Eq. (9) at |p| ∼ (20–30) MeV—

in line with the expectation from the Cottingham anal-
yses of pion and nucleon masses discussed above. Note
that this translates into a smaller relative error on the
total amplitude AEFT

ν .

CHARGE INDEPENDENCE BREAKING

The LNV contact term C̃1 corresponds to the inser-
tion of two left-handed weak currents in Eq. (1). The
insertion of two (vector) electromagnetic currents gen-
erates in chiral EFT a new contact term—denoted by
C̃1 + C̃2—that contributes to CIB in NN scattering pro-
cesses [40, 43]. The calculation of C̃1 + C̃2 proceeds along
similar lines to the one of C̃1, but is further complicated
by the pion-exchange contribution, in which the exter-
nal photon currents couple to the virtual pion. We treat
this intermediate-state Compton scattering amplitude in
analogy to the discussion of the pion Cottingham for-
mula above, which, for on-shell pions, amounts to iso-
lating the pion pole in a dispersion relation [77–79], and
thus corresponds to our strategy of evaluating the elastic

FIG. 3: Integrand functions defined in Eq. (11), appearing
in the matching relations (9) and (10) for the LNV cou-

pling C̃1: aχ(|k|) (solid red line extending to |k| = 4mπ),
a<(|k|) (solid blue line), and a>(|k|) (dark-green thin band
obtained by taking the range ḡNN1 ∈ [−10, 10]). The dashed
red/blue lines and light green band correspond to the inte-
grands aχ,<,>(|k|) entering the matching relation for the CIB

coupling C̃1 + C̃2. The light green band corresponds to the
range ḡNNLR ∈ [−10, 10].

contributions. The resulting matching relation becomes
analogous to Eqs. (9)–(11), but includes, in addition to
the appropriately amended NN pieces, a ππ contribution
from the pion-exchange diagram. The matching is illus-
trated in Fig. 3 and we refer to Ref. [75] for the explicit
expressions. Numerically, we obtain

(C̃1 + C̃2)(µχ = Mπ) = 2.9(1.1)inel(0.3)r(0.3)par

= 2.9(1.2). (13)

The assigned inelastic error corresponds to a relative er-
ror of about 50% in the singular NN electromagnetic am-
plitude at |p| ∼ 25 MeV, larger than the 30% in the weak
amplitude. In addition to the new class of pion-exchange
diagrams, this is motivated by the observation that now
the parametric error becomes more sizable, almost exclu-
sively due to the NN short-distance coupling ḡNNLR varied
within [−10, 10] and the scale Λ between 2 and 4 GeV.
Indeed, if Λ were decreased to values as low as 1 GeV
and thus into the energy region where the applicability
of the OPE becomes questionable and inelastic effects im-
portant, a variation around 1.0 would be obtained. Nu-
merically, the ππ contribution dominates, yielding (C̃1 +
C̃2)(µχ = Mπ)|ππ = 2.4, while the effect from the most

uncertain region, (C̃1 + C̃2)(µχ = Mπ)||k|∈[0.4,1.5] GeV =
0.55, falls safely within our uncertainty estimate.

The result (13) already compares quite well to the phe-
nomenological determination (C̃1 + C̃2)(µχ = Mπ) = 5.0
from Ref. [43]. However, since the contact term is scale
and scheme dependent, it is more appropriate to com-
pare directly observables calculated based on Eq. (13).
To this end, we first note that within LO chiral EFT the
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scattering lengths ann, anp, and aCpp (the latter defined
in the modified effective range expansion to account for
Coulomb effects [80–82]) can be mapped onto contact
terms for each channel

C̃np = C̃ +
e2

3

(
C̃1 + C̃2

)
,

C̃nn/pp = C̃ − e2

6

(
C̃1 + C̃2

)
± 1

2
C̃CSB, (14)

where C̃ denotes the isospin-symmetric combination, C̃1+
C̃2 the CIB contribution, and C̃CSB a charge-symmetry-
breaking term [83]. To test our prediction for C̃1 + C̃2, we
can thus use two observables to determine C̃ and C̃CSB,
and then predict the third based on Eq. (13). We choose

aCIB =
ann + aCpp

2
− anp = 10.4(2) fm, (15)

which would isolate the CIB contribution if NN scat-
tering were perturbative and Coulomb interactions ab-
sent, and we have used the empirical values aCpp =
−7.817(4) fm [84, 85], anp = −23.74(2) fm [86, 87],
ann = −18.9(4) fm [88]. From Eq. (13) we find aCIB =
15.5+4.5

−4.0 fm, in good agreement with Eq. (15), given that
additional uncertainties from higher chiral orders could
be attached. We thus conclude that the comparison to
CIB validates our approach at the level of (30–50)%, and
that our uncertainty estimates are realistic.

OUTLOOK

Armed with our determination of C̃1 in the MS scheme,
it becomes possible to unambiguously determine the
nn → ppe−e− amplitude Aν at low energies to LO in
chiral EFT. While dimensional regularization with mini-
mal subtraction is a convenient scheme for our matching
strategy, it is rarely used in nuclear calculations. Since
amplitudes are observables and thus scheme independent,
the LNV contact term C̃1 can be obtained in any other
scheme, for instance in momentum- or coordinate-space
cutoff schemes often applied in the ab-initio few-body
community [26–28, 89, 90], by fitting to our synthetic
data1

Aν(|p|, |p′|)e−i(δ1S0 (|p|)+δ1S0 (|p′|)) = −0.0195(5) MeV−2,
(16)

where |p| = 25 MeV (|p′| = 30 MeV) is the neutron (pro-
ton) momentum in the center-of-mass frame.

1 The amplitude Aν is related to the S-matrix element for the
process n(p) n(−p) → p(p′) p(−p′) e(pe) e(−pe) by Sν =
i(2π)4 δ(4)(pf − pi) (4G2

FV
2
udmββ ūL(pe)ucL(−pe))Aν . Various

choices of |p| and |p′| are possible, see Ref. [75] for more details.

Recent years have seen great progress in ab-initio
calculations of 0νββ decay rates of light nuclei [29–
31, 43, 91], ranging from 6He to the experimentally rel-
evant 48Ca and 76Ge, in each case starting from micro-
scopic chiral nuclear forces. However, these decay rates
only include the long-distance neutrino-exchange contri-
butions and omit the C̃1 term. Once C̃1 is obtained by
fitting to Eq. (16), this omission can now be remedied
and, for the first time, complete LO calculations can be
performed of nuclear 0νββ decay rates. For even heav-
ier nuclei such as 136Xe, which are still beyond the reach
of ab-initio techniques, the impact of the contact term
should be studied indirectly, e.g., by comparing results
for nuclei accessible to both ab-initio methods and the
respective nuclear model (see Ref. [92] for the same strat-
egy in the context of the axial-vector current).

For Aν at the kinematic point chosen in Eq. (16)
and in the MS scheme at µχ = 4Mπ, we find that the
contact-term contribution adds destructively to the neu-
trino exchange at the 15% level, but we stress that this
is a scale- and scheme-dependent statement, with simi-
lar scales in cutoff schemes indicating different, in some
cases even constructive, effects [75]. Moreover, as dis-
cussed in Refs. [40, 43], while a contact term of natural
size affects ∆I = 0 transitions such as nn → ppe−e− at
the (10–20)% level, its effect is amplified to the level of
(50–70)% in ∆I = 2 nuclear transitions due to a node in
the matrix element density. Based on our result for Aν ,
its effect can now be addressed in calculations of realis-
tic 0νββ nuclear transitions, greatly reducing a crucial
uncertainty in the interpretation of future searches for
0νββ decay [93–99].
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