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A quantum system subject to continuous measurement and post-selection evolves according to
a non-Hermitian Hamiltonian. We show that, as one increases the strength of post-selection, this
non-Hermitian Hamiltonian can undergo a spectral phase transition. On one side of this phase
transition (for weak post-selection) an initially mixed density matrix remains mixed at all times,
and an initially unentangled state develops volume-law entanglement; on the other side, an arbi-
trary initial state approaches a unique pure state with low entanglement. We identify this transition
with an exceptional point in the spectrum of the non-Hermitian Hamiltonian, at which PT symme-
try is spontaneously broken. We characterize the transition as well as the nontrivial steady state
that emerges at late times in the mixed phase using exact diagonalization and an approximate,
analytically tractable mean-field theory; these methods yield consistent conclusions.

The dynamics of open quantum systems is a cen-
tral theme in contemporary many-body physics [1–4].
One can often model open systems as being coupled to
Markovian environments, or equivalently as undergoing
repeated weak measurements, each involving a new mea-
suring apparatus. The system and the measuring appa-
ratuses are collectively in a pure state. For each specific
sequence of measurement outcomes (called a “quantum
trajectory” [5]), the system itself is in a pure state, but if
one traces over measurement outcomes the system is in
a mixed state that evolves according to a Lindblad mas-
ter equation [6, 7]. Recent work, motivated by quantum
circuits, has explored the properties of wavefunctions as-
sociated with typical individual trajectories. These sin-
gle trajectories undergo a phase transition in their en-
tanglement properties as the rate of measurements is in-
creased [8–32]: for weak or sparse measurements, the bi-
partite entanglement of the system along a typical tra-
jectory grows to a volume law (as it does under purely
unitary dynamics); for strong or dense measurements, a
typical trajectory has area-law entangled wavefunctions.
This “measurement phase transition” has also been in-
terpreted in terms of the ability of the dynamics to hide
information in nonlocal correlations that the measure-
ments do not probe [12, 13, 15]. This transition is, how-
ever, invisible in the trajectory-averaged evolution of the
density matrix under the master equation.

Measurement transitions have been studied, both for
typical trajectories (where each trajectory is weighted by
the Born probability of the measurement outcomes), and
for post-selected trajectories where one fixes a particular
measurement outcome at the outset. The transition that
occurs in the latter case is the “forced measurement phase
transition” [31] (see also [33–35]), and might belong to a
different universality class than that for typical trajecto-
ries [31]. Work so far on either transition has assumed

some irreducible temporal randomness, in the dynamics
or the measurement outcomes. This temporal random-
ness has been assumed to be central to the physics of the
transition [8, 11], but makes it unnatural to address mea-
surement phase transitions from the spectral perspective
that has proved fruitful for understanding many-body
entanglement and chaos [36–38].

In the present work, we show that temporal random-
ness is not essential to realize measurement-induced en-
tanglement transitions. We study systems in which the
time evolution and the measurement outcomes are fixed,
so there is a well-defined non-unitary evolution opera-
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FIG. 1. Phase diagram of purification rate—i.e., the gap
between the slowest- and second-slowest decaying eigenval-
ues of the non-Hermitian Hamiltonian (7)—vs. measurement
strength γ and interaction strength J for h0 = 1.25 and
ε = 0. The dashed line is the mean-field prediction, which
is in good agreement with the numerical data (color map) on
one-dimensional spin chains. The model is solvable at γ = 1
(dotted one). Inset: size-dependence of gap for J = 0.95.
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tor whose spectral properties we can study. We con-
sider a chaotic Ising chain subject to continuous weak
measurements of the Pauli operator σy on every site.
We post-select on the outcome where the weak mea-
surements do not show the spin being in the state
| − y〉. This post-selected dynamics is described by a
non-Hermitian Hamiltonian that (apart from a trivial
shift on the diagonal) has purely real entries [39]. This
non-Hermitian Hamiltonian undergoes a spectral tran-
sition: for strong measurements, each eigenvalue of the
non-Hermitian Hamiltonian has a distinct imaginary part
(decay rate), so any initial state eventually gets projected
onto the longest-lived eigenstate, which is area-law entan-
gled; when the measurements are weaker than a certain
threshold, all the eigenvalues have the same decay rate,
so an initially mixed state remains mixed forever. (A
related result holds in the volume-law phase of the mea-
surement transitions studied so far: mixed states are ex-
ponentially long-lived in system size [12, 30].) Further, an
initial product state develops volume-law entanglement.
An analogue of this post-selection transition is sharply
defined even for few-level systems, and corresponds to
an exceptional point [40]. In the many-body case in the
thermodynamic limit, the transition is instead due to
the coalescence of many exceptional points; surprisingly,
the critical measurement strength remains finite and the
mixed phase exists as a true phase. We present numerical
evidence for this conclusion, prove that it holds along a
solvable line of parameters, and develop a mean-field the-
ory of the transition, which works better than one might
expect even in one dimension (Fig. 1). We then explore
the phenomenology of the mixed phase and transition,
and compare them with the random-circuit problem.

Exceptional points have been extensively studied,
mostly in the context of few-level systems [40–46]; to
our knowledge, it has not previously been observed that
exceptional points can occur in the middle of the spec-
trum for a chaotic strongly interacting system in the
thermodynamic limit. We also emphasize that our post-
selected “purification transitions” are distinct from phase
transitions in the steady-state purity of a density matrix
that occurs in some master equation evolutions [47–49].
The master equations associated with the non-Hermitian
Hamiltonians we study always have the infinite temper-
ature density matrix as the long-time steady state.

Purification of a two-level system.—We first consider
the simplest purification problem, which is that of a
two-level system. Consider a master equation with a
single jump operator proportional to (1 − σy) [1, 39].
The corresponding non-Hermitian Hamiltonian is Heff =
H0−ib(1−σy). We choose our coordinate system so that
H0 = σx; then Heff = M0 − ib where

M0 ≡
(

0 1 + b
1− b 0

)
, (1)

and b is real. The characteristic equation of this matrix is

λ2 = 1−b2, so when |b| < 1 the eigenvalues are both real.
The eigenvalues collide when b = 1, leading to an “excep-
tional point.” When b > 1 both eigenvalues are purely
imaginary. M0 is a classic example of a PT-symmetric
non-Hermitian matrix. Such matrices have real spectra,
but nonorthogonal eigenvectors. In the present example,
the (standard) inner product between the two eigenvec-
tors is |b|. When b = 1 − ε, the eigenvectors take the
form |±〉 ≈ (1,±

√
ε/2). At the exceptional point b = 1

the eigenvectors become parallel, so the matrix ceases to
be diagonalizable. For small ε > 0, the two eigenvectors
are linearly independent and thus span the entire space.
However, the expression for a generic vector in this ba-
sis [for example (0, 1) = 1/

√
ε(|+〉 − |−〉)] involves large

coefficients and approximate cancellations.
We consider the dynamics of initially mixed states

evolving under this non-Hermitian Hamiltonian, T =
exp(−iHefft). For any diagonalizable matrix one can
write T = PDP−1, where the columns of P are eigen-
vectors of Heff , and D is a diagonal matrix with entries
e−iλkt where λk are the eigenvalues of Heff . We write
this expression out in general, using some reference or-
thonormal basis:

ρ ∝ [(P †)−1]ije
iλ∗

j t(P †)jkPkle
−iλlt(P−1)lm. (2)

Eq. (2) supports two kinds of behavior. In one regime
(|b| > 1 for the toy model) the λk have unequal imaginary
parts, and T is (up to normalization) a projector onto the
slowest-decaying eigenvector. In the other (|b| < 1) all
the λk have the same imaginary part, so a mixed state
remains mixed. The phase factors in Eq. (2) oscillate,
and averaging over oscillations (by going into an appro-
priate “diagonal ensemble” [37]) yields the time-averaged
density matrix

ρss ∝ [(P †)−1]ij(P
†)jkPkj(P

−1)jm. (3)

Defining the steady-state purity as Π ≡ Tr(ρ2
ss)/(Trρss)

2,
one finds that Π = 1

2 (1 + b2). Putting this together with
the |b| > 1 regime, the steady-state purity in this case is a
continuous function of b, with a cusp at b = 1. Precisely
at the exceptional point, Heff has only one eigenvector,
(1, 0). An initial state |ψ〉 = (cos θ, sin θ) evolves to
the (unnormalized) state |ψ(t)〉 = (cos θ + it sin θ, sin θ).
Thus, any initial state eventually points along the eigen-
vector, and a mixed state purifies as 1−Π(t) ∼ 1/t4.

Mean-field theory.—The analysis above can be directly
extended to a mean-field theory for purification transi-
tions. Consider the non-Hermitian Hamiltonian for N
sites i each with a spin-1/2 particle that interacts with
external magnetic fields and each other particle:

Heff =
∑
i

[hiσ
z
i + giσ

x
i − iγ(1− σyi )]+

∑
ij

Jijσ
z
i σ

z
j , (4)

in which hi/gi is a magnetic field in the z/x-direction, Jij
is the interaction strength, and γ is the strength of post-
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FIG. 2. (a) Dynamics of the purity Π(t) of an initially fully mixed state and (b) the bipartite entanglement entropy S1 of a
random initial pure state (averaged over 100 random product states) under the Hamiltonian (4), showing a clear qualitative
distinction between the area law/pure and volume law/mixed phases. (c) In the mixed phase, the time-averaged density matrix
(see main text) has a finite entropy density that continuously decreases as γ is tuned toward the transition. The quantity α
(which is an estimate of the accessible Hilbert space) tracks the Von Neumann entropy density (s1) for small γ. (d) On the area
law side, any initial state converges to the slowest decaying eigenstate, which is area law entangled with (inset) a coefficient that
grows as the transition is approached. (e) Eigenvalue statistics in the mixed phase; (inset) the deviation from random-matrix
theory seems to persist with system size. (f) Eigenvector entanglement for a single realization at γ = 0.9. (inset) The mean
half-chain eigenvector entanglement grows as a volume law. Panels (a,b,d) are for ε = 0; panels (c,e,f) are for ε = 0.05, to lift
degeneracies in the spectrum and make the problem well-defined. Results are insensitive to the precise choice of ε. Error bars
in (c,e) denote one standard deviation due to variations over disorder realizations.

selection. Decoupling the interaction yields a Hamilto-
nian for a single spin subject to a complex field,

heff(〈σz〉) =
(
hi +

∑
j
Jij〈σzj 〉

)
σz + giσ

x + iγσy. (5)

A self-consistent system can be attained by solving for
〈σz〉. For a translation-invariant system, this mean-field
theory predicts that the phase transition occurs when

gγ = g2 + (h− Jz)2, (6)

where z is the coordination number of each site. This
mean-field theory agrees well with numerics even for one-
dimensional spin chains, though there are discrepancies
at interaction strengths J ≈ 1 (Fig. 1).

One-dimensional spin chains.—We now turn to nu-
merical results on spin chains evolving under the follow-
ing non-Hermitian Hamiltonian:

H =
∑
i

[
hiσ

z
i + σxi − iγ(1− σyi ) + Jσzi σ

z
i+1

]
. (7)

We will explore both the translation-invariant model and
a model with weak randomness in the longitudinal fields

hi ∈ [h0 − ε, h0 + ε]. We will further restrict ourselves to
h0 = 1.25 for specificity—h0 = 1.25, J = 0.95 gives good
chaotic level statistics for small systems in the Hermitian
limit. (The Hermitian model has been used as a “generic”
chaotic model, see e.g. [50].) Eq. (7) has a special line at
γ = 1, along which σxi and σyi form the raising operator
σ+
i . Consequently, H is an upper triangular matrix and

its eigenvalues are precisely its diagonal entries. Since
these diagonal entries are real (up to the offset), this
solvable line must lie in the mixed phase, consistent with
our numerics and mean-field theory.

The phase diagram of the clean model (ε = 0) is plot-
ted in Fig. 1. The extent of the mixed phase is non-
monotonic, with purification happening soonest when
J ≈ h0/2. This matches the mean-field prediction: at
J = h0/2, the applied longitudinal field exactly cancels
the self-generated mean field at the transition. Past a
critical decay rate, the pure phase arises from a sequence
of exceptional points that appear in increasingly close
proximity to each other with increasing system size [39].

In the mixed phase, Π(t) stabilizes to some finite long-
time value [Fig. 2(a)], with oscillations whose period and
amplitude grow as one approaches the transition; in the
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pure phase Π(t) quickly approaches unity. Moreover, the
bipartite entanglement of an initially pure state grows to
an apparent volume law in the mixed phase [Fig. 2(b)]—
though its growth is very slow near the transition [39]—
but in the pure phase it seems to saturate at an area
law. To access the long-time limit, we must proceed dif-
ferently in the two phases. In the mixed phase, following
Eq. (3), one can construct a time-averaged density matrix
ρss starting from the identity. ρs.s. has volume law Rényi
entropies throughout the mixed phase, with coefficients
that decrease as the transition is approached [Fig. 2(c)].
The spectrum of ρss has a power-law tail [39], which ex-
plains the very different volume-law coefficients of S∞
and S1. In the pure phase, any initial state gets projected
onto the longest-lived eigenvector; for γ = 1.1 the entan-
glement entropy of this extremal state (which a generic
initial state approaches) is clearly area-law [Fig. 2(d)].

We now turn to the properties of the eigenvalues and
eigenstates of the Hamiltonian (7), which (distinctively)
the present setup gives us access to. The eigenvalue
statistics are illustrated in Fig. 2(e). We character-
ize these via the level-statistics ratio r ≡ min(|λi −
λi−1|, |λi+1− λi|)/max(|λi− λi−1|, |λi+1− λi|) [51]. (We
add weak quenched randomness to the longitudinal field,
with a bandwidth ε = 0.05 � h0, to break any resid-
ual spatial conservation laws; the exact value of ε does
not affect our results.) In the mixed phase, all eigenval-
ues have the same imaginary part so eigenvalue differ-
ences are purely real. For a chaotic real Hamiltonian,
〈r〉 ≈ 0.53 while for a localized or integrable Hamilto-
nian, 〈r〉 ≈ 0.39 (Poisson level statistics). We find that
even for moderately large γ, r is close to its value in the
Hermitian limit. Nearer to the transition, however, level
repulsion gets weaker, and the level spacing ratio dips
toward the Poisson value. This dip does not appear to
be a finite-size effect: the histogram of r appears well
converged with respect to system size. At γ = 1, the
eigenvalues are just the diagonal entries of the Hamilto-
nian, and their level spacing is manifestly Poisson.

Finally, we turn to the eigenstates. For small γ, these
are qualitatively similar to those in the Hermitian limit:
almost all eigenstates in the middle of the spectrum
are highly entangled, whereas those near the spectral
edge have low entanglement. Eigenstates at similar en-
ergies have similar entanglement properties, as dictated
by the eigenstate thermalization hypothesis. As γ in-
creases, however, nearby eigenstates begin to have large
variations in their entanglement [Fig. 2(f)], signaling the
breakdown of eigenstate thermalization. Nevertheless,
the average half-cut eigenstate entanglement continues
to scale as a volume law in this regime. A generic initial
pure state, after dephasing, becomes a random-phase su-
perposition of these eigenstates, and correspondingly also
exhibits volume-law entanglement.

As already noted, a crucial feature of eigenvectors in
the non-Hermitian case is that they are not mutually or-

thogonal. Although any state can be expressed as a su-
perposition of eigenvectors, a generic random-phase su-
perposition of these can be efficiently approximated by
a vector in a much lower-dimensional space. Thus the
matrix P transforming the computational basis into the
eigenbasis can be well approximated by a lower-rank ma-
trix P ′. We estimate the needed rank of P ′ in terms of
the participation ratio of the list of singular values of P ,
which scales as 2−α(γ)L where α ≡ (log2 P

′)/L decreases
from unity in the Hermitian limit to approximately 0.64
at the transition. Notably, some distance away from the
transition, α is very close to the entropy density s1 of the
time-averaged density matrix [Fig. 2(c)].

Discussion.—The central result of this work is that
an entanglement transition can occur, with no spatial or
temporal randomness, via the breaking of PT symmetry
in an interacting many-body system under continuous
measurement. This PT-symmetry breaking seems differ-
ent from that in random circuits—e.g., it happens even
for a two-level system—but the phase structure of the
problems is qualitatively similar. In both cases, there
is a phase in which an initially mixed density matrix
stays mixed—but with reduced entropy—and an initial
product state acquires volume law entanglement, and a
phase where an initially mixed state purifies and a prod-
uct state only develops area-law entanglement. While
(to our knowledge) the model (7) and its transition have
not been discussed, other many-body exceptional points
exist [44–46], and it would be interesting to study them
from the entanglement perspective developed here.

The flow of quantum information under non-Hermitian
time evolution is an interesting question to explore. The
coefficients of the initial state in the eigenbasis become
very large to capture the behavior along the dimen-
sions approximately “missing” from the eigenbasis. Un-
der time evolution, this initial state dephases and is ro-
tated into the (lower-dimensional) space that is efficiently
spanned by the eigenvectors. However, the information
carried by the late-time state is determined by its large
coefficients along the “missing” dimensions. The implica-
tions of this dynamics for encoding and retrieving quan-
tum information remain to be understood. It would be
interesting, e.g., to adapt the theory of entanglement do-
main walls [16, 18, 24, 52, 53] to non-Hermitian quantum
mechanics: because our system lacks quenched random-
ness, we expect these domain walls to have qualitatively
different properties than in random circuits with mea-
surements, so the subleading correction to volume law
entanglement in the mixed phase should differ.

This work marks an initial foray into studying entan-
glement in post-selected, non-Hermitian quantum me-
chanics, which, as we have shown, is rich enough to
capture entanglement transitions that are distinct from
both the many-body localization transition in unitary
dynamics and the measurement transition in random
unitary-projective dynamics. We have not addressed
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whether there are practical protocols to realize these ef-
fects in near-term devices. The probability of the no-
measurement evolution occurring in a system of size L
for a time t scales exponentially with Lt, so achiev-
ing the long-time limit for a large system is inaccessi-
ble. However, locally detectable crossovers associated
with this transition should occur on finite timescales [54].
Viewed from the angle of quantum complexity theory,
post-selected quantum mechanics is known to encompass
a much broader complexity class than conventional quan-
tum mechanics [55]. As a result, there may be funda-
mental information-theoretic barriers to universal real-
izations of non-Hermitian quantum mechanics. Whether
these arguments prohibit efficient simulations of specific
models, such as the ones studied in this paper, remains
an outstanding question.

Note added.—While this work was being completed,
Ref. [35] was posted. Both works discuss non-Hermitian
phase transitions but otherwise the models and results
do not overlap.
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