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Non-Hermiticity can destroy Anderson localization and lead to delocalization even in one dimension. How-
ever, the unified understanding of the non-Hermitian delocalization has yet to be established. Here, we develop
a scaling theory of localization in non-Hermitian systems. We reveal that non-Hermiticity introduces a new
scale and breaks down the one-parameter scaling, which is the central assumption of the conventional scaling
theory of localization. Instead, we identify the origin of the unconventional non-Hermitian delocalization as the
two-parameter scaling. Furthermore, we establish the threefold universality of non-Hermitian localization based
on reciprocity; reciprocity forbids the delocalization without internal degrees of freedom, whereas symplectic
reciprocity results in a new type of symmetry-protected delocalization.

Anderson localization [1] is the disorder-induced localiza-
tion of coherent waves and plays an important role in trans-
port phenomena of condensed matter [2, 3], light [4], and cold
atoms [5, 6]. A unified understanding of Anderson localiza-
tion is provided by the scaling theory [7, 8]. On the basis of
the one-parameter-scaling hypothesis of the conductance with
respect to to the system size, it describes the criticality of lo-
calization transitions in three dimensions and predicts the ab-
sence of delocalization in one and two dimensions. Symmetry
further changes the universality class of localization. For ex-
ample, time-reversal symmetry (reciprocity) in the presence
of spin-orbit interaction enables delocalization even in two di-
mensions [9]; chiral (sublattice) symmetry enables delocaliza-
tion of zero modes even in one dimension [10–14].

Meanwhile, the physics of non-Hermitian systems has at-
tracted considerable interest in recent years [15–18]. Non-
Hermiticity originates from exchanges of energy or particles
with an environment and leads to rich properties unique to
particle-number-nonconserving systems in dynamics [19–36]
and topology [37–64]. Anderson localization was also in-
vestigated in non-Hermitian systems with asymmetric hop-
ping [65–78] and gain or loss [79–84], the latter of which is
directly relevant to random lasers [85]. Even in the presence
of non-Hermiticity, random lasers in one dimension never ex-
hibit delocalization similarly to the Hermitian case. By con-
trast, a non-Hermitian extension of the Anderson model with
asymmetric hopping, which was first investigated by Hatano
and Nelson [65], exhibits delocalization in one dimension.
Importantly, this implies the breakdown of the conventional
scaling theory of localization, which predicts the absence of
delocalization in one dimension. In fact, since Anderson lo-
calization results from the destructive interference of coher-
ent waves, non-Hermiticity should lead to decoherence and
destroy Anderson localization. However, it remains unclear
how non-Hermiticity changes the scaling theory of localiza-
tion, and a unified understanding of non-Hermitian localiza-
tion has yet to be obtained.

In this Letter, we develop a scaling theory of localization in
non-Hermitian systems. On the basis of the random-matrix
approach for nonunitary scattering matrices, we reveal that
non-Hermiticity introduces a new scale and breaks down the

one-parameter-scaling hypothesis. Instead, we demonstrate
the two-parameter scaling (Fig. 1), which is the origin of
the unconventional non-Hermitian delocalization. Further-
more, we establish the threefold universality of non-Hermitian
localization according to reciprocity (Table I). While non-
Hermitian systems exhibit unidirectional delocalization in the
absence of symmetry, reciprocity forbids it without internal
degrees of freedom, which explains the absence of delocaliza-
tion in random lasers. We also find a new universality class of
localization transitions: bidirectional delocalization protected
by symplectic reciprocity.

Non-Hermitian delocalization. — In the conventional
scaling theory of localization [8], we consider the depen-
dence of the conductance G on the length scale L. A suf-
ficiently small system is diffusive and described by Ohm’s
law (Boltzmann equation), leading to G ∝ Ld−2 in d di-
mensions. For a sufficiently large system, on the other hand,
the wave coherence is relevant and Anderson localization can
occur, leading to G ∝ e−αL (α > 0). The transition be-
tween these two regimes can be understood by the scaling
function β (G) := d logG/d logL. In the localized regime,
it is given as β (G) = logG < 0 and hence the conductance
G gets smaller with increasing the system length L. We have
β (G) = d−2 in the diffusive regime, which is positive (nega-
tive) for d > 2 (d < 2). Consequently, a localization transition
occurs in three dimensions at G = Gc where β (Gc) = 0; by
contrast, no transitions occur in one dimension since β (G) is
always negative and G monotonically decreases in both diffu-
sive and localized regimes.

Non-Hermiticity gives rise to a new regime that has no
analogs in particle-number-conserving systems. In fact, it de-
scribes coupling to an external environment and can lead to
amplification (lasing), resulting in G ∝ eγL with the am-
plification rate γ > 0. In such a regime, we have β (G) =
logG > 0 in arbitrary dimensions, and hence delocalization
is possible even in one dimension. The amplifying regime can
arise from nonunitarity of scattering matrices. In Hermitian
systems, unitarity is imposed on scattering matrices as a di-
rect consequence of conservation of particle numbers, and the
transmission amplitudes cannot exceed one. In non-Hermitian
systems, by contrast, such a constraint is absent and the con-
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ductance G can be arbitrarily large, which enables the ampli-
fication as G ∝ eγL.

The delocalization in the amplifying regime can also be un-
derstood by the Thouless criterion [7, 86]. In the diffusive
regime, it takes the Thouless time tTh ∝ L2 for a particle to
reach one end from the other in a system of size Ld. To re-
alize this diffusive transport, tTh should be smaller than the
time scale ∆t ∝ (∆E)

−1 determined by the level spacing
∆E ∝ L−d of the spectrum. Because of tTh/∆t ∝ L2−d,
this is possible in three dimensions but impossible in one di-
mension. In the amplifying regime, on the other hand, parti-
cle inflow from the environment enables the ballistic trans-
port, and the relevant time scale is tN ∝ L. Because of
tN/∆t ∝ L1−d, tN is comparable to ∆t even in one di-
mension, which results in the delocalization. Saliently, an
additional relevant scale accompanies the amplifying regime,
which implies the breakdown of the one-parameter-scaling
hypothesis [7, 8], as discussed below.

Scaling equations. — To uncover universal behavior of
Anderson localization in non-Hermitian systems, we revisit
the Hatano-Nelson model [65] and derive the scaling equa-
tions for transport properties. We show that the scaling be-
havior should be understood in terms of two parameters rather
than one parameter. On the basis of this understanding, we
later discuss Anderson localization for other symmetry classes
and find new universality classes. Our scaling theory also ex-
plains the different universality classes between the Hatano-
Nelson model and random lasers.

The Hatano-Nelson model [65] reads

Ĥ =
∑
n

{
−1

2

(
ĉ†n+1JRĉn + ĉ†nJLĉn+1

)
+ ĉ†nMnĉn

}
,

(1)
where ĉn (ĉ†n) annihilates (creates) a fermion at site n, JR :=
J+γ/2 (JL := J−γ/2) describes the hopping from the left to
the right (from the right to the left), andMn ∈ R is the random
potential at site n. The asymmetry γ of the hopping can be
introduced, for example, in open photonic systems [31, 74]
and cold atoms with dissipation [52]. Whereas eigenstates are
localized for weak γ, they can be delocalized for strong γ.
In the literature, the complex spectrum [65, 67–69, 76], the
conductance [68, 73], and the chiral transport [74, 75] were
investigated for this lattice model. Nevertheless, the scaling
theory has not been fully formulated.

The nature of the non-Hermitian delocalization should not
depend on specific details of the model but solely on sym-
metry. To understand such a universal feature, we construct a
continuum model from the Hatano-Nelson model. To this end,
we focus on the narrow shell around the band center ReE = 0
and decompose the fermions by ĉn = eikFnψ̂R + e−ikFnψ̂L

(kF = π/2). Here, ψ̂R and ψ̂L are the right-moving and left-
moving fermions on the two Fermi points (valleys), respec-
tively. Assuming that ψ̂R and ψ̂L vary slowly in space, we
have the continuum model Ĥ =

∫
dx (ψ̂†R ψ̂†L)hA(ψ̂R ψ̂L)T

with

hA = (−i∂x + iγ/2) τ3 +m0 (x) +m1 (x) τ1, (2)

where Pauli matrices τi’s describe the two valley degrees of
freedom. We assume that m0 and m1 are Gaussian dis-
order that satisfies 〈mi (x)〉 = 0 and 〈mi (x)mj (x′)〉 =
2µiδijδ (x− x′) with µi > 0 and the ensemble average 〈?〉.
Although we begin with the Hatano-Nelson model, we em-
phasize that hA does not depend on its specific details but uni-
versally on symmetry. Generic non-Hermitian systems with-
out symmetry including hA are defined to belong to class A in
the 38-fold classification of internal symmetry [57, 87, 88].

Now, we formulate the scaling equations (functional renor-
malization group equations). The conductance GR from the
left to the right (GL from the right to the left) is given by
the corresponding transmission eigenvalue TR (TL) according
to the Landauer formula [89]. Then, we consider the incre-
mental changes of TR/L, in addition to the reflection eigen-
value RL from the left to the left (RR from the right to the
right), upon attachment of a thin slice in which the scattering
can be treated perturbatively. Such attachment renormalizes
the probability distribution of TR/L and RL/R, resulting in its
scaling (Fokker-Planck) equation according to the system size
L [90]. It provides all the information about the transmission
eigenvalues TR/L and the conductances GR/L. In the Hermi-
tian case, the scaling equations were obtained by Dorokhov,
and by Mello, Pereyra, and Kumar [91–93].

For the continuum model hA, we find that non-Hermiticity
γ amplifies one of TR and TL and attenuates the other, but
does not have significant influence on their phases. As a result,
we have [90]

〈dTR/L〉
dL

= ±γTR/L −
TR/L

(
1−RL/R

)
`

, (3)

where ` := 1/2µ1 is the mean free path determined by the
disorder strength. The ensemble average 〈?〉 is taken over
the attached thin slice and the phases of the scattered waves
for given TR/L and RL/R. This scaling equation (3) implies
that the transmission amplitudes are given as TR/L = e±γLT̃

with the transmission amplitude T̃ in Hermitian systems. For
L � `, the conductance fluctuations become as large as the
averages 〈G〉, which no longer represent the conductances of a
single sample. In fact, the conductance distributions are broad
and asymmetric, and follow the log-normal distributions.
Consequently, the typical conductances are Gtyp := e〈logG〉

instead of 〈G〉. Because of G̃typ/Gc ∼ e−L/` for L � ` in
the Hermitian case [91–93], the typical conductances in the
non-Hermitian case are Gtyp

R/L/Gc ∼ e(±γ−1/`)L. Thus, ei-
ther one of the two conductances exhibits delocalization. For
γ ≥ 0, for example,Gtyp

R diverges for L→∞ above the tran-
sition point γ = γc := 1/`, around which the critical behavior
|Gtyp

R −Gc|/Gc ∝ |γ − γc| appears.
Two-parameter scaling. — In Hermitian systems, the

scaling equations and the conductance G̃ depend solely on
L/`. This confirms the one-parameter-scaling hypothesis,
which underlies the absence of delocalization in one dimen-
sion [7, 8]. However, the obtained scaling equation (3) clearly
indicates the emergence of the additional scale γ due to non-
Hermiticity. In fact, non-Hermiticity leads to the distinction
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FIG. 1. Two-parameter scaling of non-Hermitian localization. The
renormalization-group flow is shown according to the conductance
GR from the left to the right and the conductance GL from the
right to the left. The system size L increases along with the ar-
rows. While localization with (GR, GL) = (0, 0) (black dot)
occurs in Hermitian systems (GR = GL), delocalization with
(GR, GL) = (∞, 0) , (0,∞) (red dots) arises for sufficiently strong
non-Hermiticity.

between GR and GL, which is impossible in Hermitian sys-
tems by conservation of particle numbers. From Eq. (3),
we show in Fig. 1 the renormalization-group flow based on
both GR and GL. In addition to the fixed point (GR, GL) =
(0, 0) for the localized phase, a pair of additional fixed points
(GR, GL) = (Gc, 0) , (0, Gc) emerges away from GR = GL.
As a result, delocalization with (GR, GL) = (∞, 0) , (0,∞)
is possible for sufficiently strong non-Hermiticity. Therefore,
the emergence of the new scale and the breakdown of the one-
parameter scaling are the origin of the non-Hermitian delocal-
ization in one dimension.

It is also notable that the average conductances are
〈GR/L〉 /Gc ∼ e(±γ−1/4`)L since the Hermitian counterpart
is 〈G̃〉 /Gc ∼ e−L/4` [91–93]. Hence, 〈GR〉 exhibits criti-
cal behavior at γ = 1/4`, which is different from the critical
point γ = 1/` of the typical conductance Gtyp

R [73]. Such a
difference of the critical points is another manifestation of the
breakdown of the one-parameter scaling. In fact, if the scaling
equations are described solely by a single parameter `, both
〈GR〉 and Gtyp

R are functions of L/`, and hence their critical
points should coincide with each other. The different critical
points of 〈GR〉 and Gtyp

R imply the two different length scales
` and γ−1.

Threefold universality by reciprocity. — Symmetry can
further change the universality class of Anderson localiza-
tion. In particular, reciprocity, defined by T HTT −1 = H
with a unitary matrix T , is one of the most fundamental
symmetry relevant to localization. For example, reciprocity
with T T ∗ = +1 (−1) enhances (suppresses) localization and
shortens (lengthens) localization lengths in Hermitian wires

TABLE I. Threefold universality of non-Hermitian localization based
on reciprocity. The types of delocalization and the typical conduc-
tances for L � ` are shown according to non-Hermiticity γ and the
mean free path ` > 0.

Class Symmetry Delocalization Conductances
A No Unidirectional e(±γ−1/`)L

AI† HT = H No e−L/`

AII† σ2H
Tσ−1

2 = H Bidirectional e(|γ|−1/`)L

in quasi-one dimension [91–93]. Moreover, symplectic reci-
procity with T T ∗ = −1 enables delocalization even in two
dimensions [9], although delocalization is forbidden without
symmetry protection. Here, we uncover the threefold univer-
sality of non-Hermitian localization based on reciprocity (Ta-
ble I). As demonstrated below, the influence of reciprocity is
more dramatic than the Hermitian case.

We consider a non-Hermitian continuum model

hAI† = −iτ3∂x +m0 (x) + (m1 (x) + iγ/2) τ1, (4)

which respects τ1hTAI†τ
−1
1 = h and hence belongs to class

AI† (orthogonal class) [57, 90]. Notably, the asymmetry be-
tween the valleys [i.e., i (γ/2) τ3 term in Eq. (2)] is forbid-
den because of reciprocity, which leads to GR = GL even
in non-Hermitian systems. Thus, the nonunitary fixed points
away from GR = GL in Fig. 1 cannot be reached, and the
unidirectional delocalization is forbidden. In terms of the
scaling equations, reciprocity-preserving non-Hermiticity is
irrelevant by the ensemble average over disorder, whereas
reciprocity-breaking non-Hermiticity gives rise to an addi-
tional scale. Consequently, the universality in class AI† is
the same as the Hermitian counterpart, which contrasts with
class A. The continuum model in Eq. (4) describes disordered
wires with gain or loss (i.e., complex onsite potential), includ-
ing random lasers [85]. Reciprocity underlies the absence of
delocalization in random lasers.

On the other hand, reciprocal systems with T T ∗ = −1
instead of T T ∗ = +1 are defined to belong to class AII†

(symplectic class) [57]. Although reciprocity imposes GR =
GL also in this case, an important distinction in the symplectic
class is Kramers degeneracy, which gives rise to a new type of
non-Hermitian delocalization protected by reciprocity. The
corresponding continuum model is

hAII† = (−i∂x + ∆σ1 + i (γ/2)σ3) τ3 +m0 (x)+m1 (x) τ1,
(5)

which respects (σ2τ1)hTAII† (σ2τ1)
−1

= hAII† . Here, Pauli
matrices σi’s describe the internal degrees of freedom such
as spin. The scaling equations can be obtained in a similar
manner to class A [90]. In this case, one of the Kramers pair
is amplified to the right while the other to the left because
of non-Hermiticity. We then have Gtyp

R /Gc = Gtyp
L /Gc ∼

(eγL + e−γL) e−L/` ∼ e(|γ|−1/`)L for L � `. Thus,
the eigenstates are bidirectionally delocalized in contrast to
classes A and AI†. Without symmetry, one of the transmitted
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channels dominates the other, and non-Hermitian delocaliza-
tion is unidirectional. Hence, the bidirectional delocalization
arises only in the presence of symplectic reciprocity. Despite
GR = GL, the conductance of one channel serves as GR and
that of the corresponding Kramers partner serves as GL in
the two-parameter scaling shown in Fig. 1, the sum of which
yields the total conductance.

While reciprocity is equivalent to time-reversal symmetry
T H∗T −1 = H in Hermitian systems, this is not the case in
non-Hermitian systems. The corresponding symmetry classes
with time-reversal symmetry are classes AI and AII [57].
The universality of non-Hermitian localization is also differ-
ent depending on whether one imposes time-reversal sym-
metry or reciprocity. In fact, time-reversal symmetry does
not change the universality of the non-Hermitian localiza-
tion [90], whereas reciprocity can forbid or enhance it as dis-
cussed above. Reciprocity also leads to threefold universality
of non-Hermitian random matrices [94].

Lattice models. — To confirm our nonunitary scaling the-
ory, we numerically investigate non-Hermitian lattice mod-
els by the transfer-matrix method [90, 95]. In general, a
wave function localized around site n = n0 is proportional
to e−|n−n0|/ξL(ξR) for n < n0 (n > n0). While the two local-
ization lengths ξL and ξR are equivalent in Hermitian systems,
they are different in a similar manner to the conductances GL

and GR. Figure 2 (a) shows the localization lengths for the
Hatano-Nelson model in Eq. (1). For γ ≥ 0, the right local-
ization length ξR diverges at a critical point, whereas the left
localization length ξL remains finite, which is a signature of
the unidirectional delocalization. Around the critical point, ξR
diverges as ξR ∝ |γ − γc|−1.

A symplectic extension of the Hatano-Nelson model is
given by Eq. (1) with JR := J − i∆σ1 + γσ3/2, JL :=
J + i∆σ1 − γσ3/2, and Mn := mn + hσ3. This lattice
model with h = 0 corresponds to the continuum model in
Eq. (5). In contrast to the original Hatano-Nelson model, we
have ξL = ξR for h = 0 because of reciprocity. As a result,
both ξL and ξR diverge at a critical point [Fig. 2 (b)], which
is a signature of the bidirectional delocalization. Because
of the reciprocity-protected nature, even a small reciprocity-
breaking perturbation h 6= 0 vanishes the delocalization,
which is unique to the symplectic class.

Chiral symmetry and sublattice symmetry. — In the pres-
ence of chiral or sublattice symmetry, zero modes can be delo-
calized even in Hermitian systems in one dimension, accom-
panied by Dyson’s singularity [10]. Similarly to time-reversal
symmetry and reciprocity, chiral symmetry and sublattice
symmetry are distinct from each other in non-Hermitian sys-
tems, the former (latter) of which corresponds to class AIII
(AIII†) [57]. For example, a random hopping model with gain
or loss respects chiral symmetry, while a random asymmetric
hopping model respects sublattice symmetry. In the presence
of chiral symmetry τ1h

†
AIIIτ

−1
1 = −hAIII, non-Hermiticity

is found not to change the universality of the delocaliza-
tion [90]; by contrast, in the presence of sublattice symmetry
τ1hAIII†τ

−1
1 = −hAIII† , non-Hermiticity enables the unidirec-
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FIG. 2. Non-Hermitian localization on lattices (L = 5000, J = 1.0,
E = 0). The disordered onsite potential is uniformly distributed
over [−W/2,W/2], and each data is averaged over 1000 samples.
(a) Hatano-Nelson model (class A). For γ > 0, the right localiza-
tion length diverges at a transition point, whereas the left localization
length remains finite. The transition points areWc = 2.22 (γ = 0.4)
and Wc = 3.56 (γ = 1.0). (b) Symplectic Hatano-Nelson model
(class AII†; ∆ = 0.2, W = 4.0). Both right and left localization
lengths diverge at the transition point γc = 1.30 (red solid curve).
The delocalization vanishes in the presence of a reciprocity-breaking
perturbation h = 0.01 (black dotted curve).

tional delocalization in a similar manner to class A. In fact,
the asymmetry between the valleys is allowed for sublattice
symmetry, but forbidden for chiral symmetry.

Discussions. — Transport phenomena of disordered sys-
tems, including Anderson localization and transitions, enjoy
universality in various scaling limits that is governed only
by a few physical parameters. This is embodied by the one-
parameter scaling of localization [7, 8]. In this Letter, we have
demonstrated that non-Hermiticity breaks it down and leads to
the two-parameter scaling, which generally describes the un-
conventional non-Hermitian delocalization. While we limit
ourselves to the single-channel case in this Letter, it is mean-
ingful to consider the limit of thick wires in order to fully un-
cover universal properties—we leave this as a future problem.

In our nonunitary two-parameter scaling, the critical expo-
nents are integers, which contrast with the more complicated
exponents in the two-parameter scaling of the quantum Hall
transition [96–99]. On the other hand, these two scaling the-
ories share similarities from a topological perspective. In par-
ticular, the Hatano-Nelson model is characterized by a topo-
logical invariant unique to non-Hermitian systems [52, 57]. In
our continuum model, this topological invariant is sgn γ, sim-
ilar to the Hall conductivity given by the Dirac mass term. An
open problem is to formulate an effective field theory for the
nonunitary two-parameter scaling, akin to the nonlinear sigma
model augmented with a topological term for the quantum
Hall transition [96–98]. In this regard, it is worth pointing out
that topological field theory descriptions for non-Hermitian
systems have been recently proposed [100].
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[31] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Nature 548, 192 (2017).

[32] K. Kawabata, Y. Ashida, and M. Ueda, Phys. Rev. Lett. 119,
190401 (2017); L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawa-
bata, M. Ueda, W. Yi, and P. Xue, Phys. Rev. Lett. 123,
230401 (2019).

[33] E. Rivet, A. Brandstötter, K. G. Makris, H. Lissek, S. Rotter,
and R. Fleury, Nat. Phys. 14, 942 (2018).

[34] M. Nakagawa, N. Kawakami, and M. Ueda, Phys. Rev. Lett.
121, 203001 (2018).
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