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Previous research on nonlinear oscillator networks has shown that chaos synchronization is attainable for
identical oscillators but deteriorates in the presence of parameter mismatches. Here, we identify regimes for
which the opposite occurs and show that oscillator heterogeneity can synchronize chaos for conditions under
which identical oscillators cannot. This effect is not limited to small mismatches and is observed for random
oscillator heterogeneity on both homogeneous and heterogeneous network structures. The results are demon-
strated experimentally using networks of Chua’s oscillators and are further supported by numerical simulations
and theoretical analysis. In particular, we propose a general mechanism based on heterogeneity-induced mode
mixing that provides insights into the observed phenomenon. Since individual differences are ubiquitous and
often unavoidable in real systems, it follows that such imperfections can be an unexpected source of synchro-
nization stability.

Synchronization in networks of chaotic oscillators is a re-
markable phenomenon that is now well established theoreti-
cally and experimentally [1], with implications for numerous
biological and technological systems [2–5]. Two conditions
are generally assumed for this phenomenon to occur: (i) that
the coupling strength be sufficiently large and (ii) that the os-
cillators be sufficiently identical. If the coupling is too weak,
the oscillators evolve mostly independently from each other,
and their trajectories tend to diverge due to sensitive depen-
dence on initial conditions—a hallmark of chaos [6]. On the
other hand, if the oscillators are not sufficiently identical, their
trajectories tend to diverge due to sensitive dependence on
parameters—another hallmark of chaos [6]—even if the ini-
tial conditions are exactly the same and the coupling strength
is otherwise suitably strong.

Previous analyses of synchronization of nonidentical
chaotic oscillators have focused mainly on cluster synchro-
nization [7, 8] and phase synchronization [9–13]. For exam-
ple, oscillator heterogeneity has been shown to mediate relay
synchronization [14–16] and to induce frequency locking by
suppressing chaos [17–20]. Global chaos synchronization of
nonidentical oscillators, on the other hand, has been explored
mainly for strong coupling and small parameter mismatches
[21–24], with an emphasis on the extent to which synchrony
persists when the oscillators are slightly different [25, 26].
These previous results consistently show that global synchro-
nization degrades as heterogeneity is increased.

A different body of work has recently shown that, for pe-
riodic oscillators, heterogeneity can in fact facilitate synchro-
nization [27–32]. A natural question is then whether a simi-
lar effect would be possible for chaotic oscillators despite the
fact that their dynamics exhibit sensitive dependence on pa-
rameters and that a well-defined synchronization manifold no
longer exists for nonidentical chaotic oscillators. This ques-
tion is especially relevant in weak coupling regimes, in which
synchronization is unstable for identical chaotic oscillators.

In this Letter, we experimentally demonstrate that oscillator

heterogeneity can enable synchronization of weakly coupled
chaotic oscillators that would otherwise not synchronize. This
surprising result is established using Chua’s oscillators diffu-
sively coupled through their x components, which leads to a
semi-infinite stability region for identical oscillators. The ro-
bustness of the effect is confirmed by showing that it occurs
consistently for random parameter heterogeneity and for dif-
ferent parameters respectively associated with temporal and
state variable scales. The effect is demonstrated across dif-
ferent network structures and is supported by simulations and
theoretical analysis. The role of oscillator heterogeneity is
isolated by showing the persistence of the effect for struc-
turally homogeneous networks of identically coupled oscil-
lators. These results have immediate implications for real
systems, where heterogeneity is ubiquitous. They also have
foundational consequences for establishing an unanticipated
relation between network coupling, oscillator heterogeneity,
and sensitive dependence on initial conditions. In particular,
although condition (i) cannot be violated in isolation without
causing desynchronization, our results show that the violation
of (ii) (albeit detrimental by itself) can mitigate the effect of
infringing (i), and thus the synchronization of chaotic oscilla-
tors can persist if both (i) and (ii) are violated together.

We start by considering networks of N diffusively coupled
oscillators described by

τi ẋi = F(xi) − k
N∑

j=1

Li jH(x j), i = 1, 2, . . . ,N, (1)

where τi denotes the time scale and xi is the state variable of
the ith oscillator. The functions F and H describe the dy-
namics of a single oscillator and their interactions, respec-
tively. The Laplacian matrix L = (Li j) = (δi j

∑
` Ai` − Ai j),

defined in terms of the adjacency matrix A = (Ai j), represents
the network structure. The parameter k controls the coupling
strength.

The oscillators and coupling are implemented in our exper-
iment using electrical circuits, as shown in Fig. 1. The oscil-
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FIG. 1. Circuit diagram of coupled Chua’s oscillators in our exper-
iment. The individual oscillators are coupled through their voltage
v(i)

x , and an LED is attached to each oscillator to visualize the voltage
oscillations. The capacitors are tunable and control the heterogeneity
across the oscillators.

lators consist of x-coupled Chua’s circuits [33] modeled as

F(x) =

η{y − x − g(x)}
x − y + z
−y/γ

 , H(x) =

x00
 , (2)

g(x) = bx +
1
2

(b − a) (|x − 1| − |x + 1|) , (3)

where x, y, and z are the state variables and η, γ, a, and b are
parameters. The variables correspond respectively to the volt-
ages vx and vy across the capacitors Cx and Cy and the cur-
rent iL through the inductor L (which is implemented using
a generalized impedance converter circuit). The parameters
a and b are determined by a nonlinear resistor (NR) with a
piecewise linear characteristic made from op-amps (TL084)
and resistors [34]. The tunable parameters of the oscillators
are controlled through tunable capacitors. The oscillators are
coupled through the voltage vx, where the directionality of the
coupling is implemented using voltage followers. A light-
emitting diode (LED) is attached to each oscillator so as to
monitor the oscillation visually, with the diode turning on for
vx > 0 and off for vx < 0. The voltage v(i)

x for each oscillator is
recorded in a computer through an analog-to-digital converter
(ADC) attached to the circuit.

The circuit parameters and variables are associated with the
dimensionless quantities in Eqs. (1)-(3) as follows:

τi =
C(i)

y

C̄y
, k = η

R
r
, η =

C(i)
y

C(i)
x

, γ =
C(i)

z R1R3R4

C(i)
y R2R2

,

a = m1R, b = m0R, x(i) =
v(i)

x

Bp
, y(i) =

v(i)
y

Bp
, z(i) =

i(i)L R
Bp

,

where C̄y = 1
N
∑N

i=1 C(i)
y , m1 and m0 are determined by the

NR, and Bp depends on both the saturation voltage of the op-
amps and the resistors connected to them [34]. The dimen-
sionless time used in Eq. (1) is defined as t′ = t/(RC̄y) and,
without loss of generality, it follows that the mean time scale
is τ̄ = 1

N
∑N

i=1 τi ≡ 1 (this condition is also imposed in our
simulations and analysis). Unless noted otherwise, the oscil-
lator parameters are fixed at η = 10, γ = 0.056, a = −1.44,
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FIG. 2. (a) Double-scroll chaotic attractor constructed from the ex-
perimental time series of the voltages vx and vy of a single uncoupled
oscillator, and the time series for vx shown separately. (b, c) Cor-
responding experimental time series for oscillators in a directed ring
for k = 8.18 (b) and in a random network for k = 5 (c). Left: network
structures, where each node is labeled with the time scale τi, and the
corresponding synchronization errors Z. Right: time series after the
initial transient colored by oscillator for initial conditions close to
the synchronous state, showing that chaos synchronization is stable
in the heterogeneous system but not in the homogeneous one. In
particular, the heterogeneous systems preserve both synchronization
and qualitative properties of the original chaotic attractor. Videos of
the time series in (b), tracked by LEDs attached to the oscillators, are
included in the Supplemental Material [35].

and b = −0.72, which gives rise to a double-scroll chaotic at-
tractor in the absence of coupling [36]. These parameters are
realized in the experiment by setting R1 = R2 = R3 = 1kΩ,
R = R4 = 1.8kΩ, C̄y = 5.7µF, Bp = 1.3V, m0 = −0.4mΩ−1,
and m1 = −0.8mΩ−1, and keeping the capacitance ratios as

C(i)
y = 10C(i)

x , C(i)
z = C(i)

x , (4)

which ensure the same η and γ values across all oscillators.
The capacitors C(i)

y , which control the time scales τi, are tuned
to vary the heterogeneity among the oscillators, and the re-
sistors r are changed to modify the coupling strength k (see
Supplemental Material [35] for details).

We first analyze in Fig. 2(b) the experimental time series
of v(i)

x for a directed ring network of five oscillators, where
the coupling strength is below the synchronization transition
threshold for the identical oscillators. The upper panel con-
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FIG. 3. Experimental results for a directed ring network of three os-
cillators. Synchronization error Z from the experiments, where the
contour lines indicate the standard deviation of τi. The outsets show
representative examples of the time series of v(i)

x for the correspond-
ing parameters. Each data point is determined from 10 experimental
trials, each corresponding to a random initial condition. The cou-
pling strength is set to k = 5.

firms that, for homogeneous time scales, the trajectories of
the oscillators diverge from each other and the system moves
away from the synchronous chaotic state. In the lower panel,
we introduce a random perturbation to the time scales, as in-
dicated on the network image. Although the synchronization
manifold x1 = · · · = xN is no longer invariant, the hetero-
geneous system remains closely synchronized for the dura-
tion of the experiment and, collectively, exhibits double-scroll
chaotic dynamics comparable to those of the uncoupled oscil-
lators [Fig. 2(a)]. Figure 2(c) shows similar result for a ran-
dom network with nonuniform indegrees. Once again, for the
subcritical coupling strength considered, the synchronization
is lost in the homogeneous system but persists in the hetero-
geneous system.

The degree of synchronization in our experiment is further
quantified by calculating the synchronization error Z. We first

define evx =

〈√
1
N
∑N

i=1

[
v(i)

x (t) − v̄x(t)
]2 〉

, where v̄x(t) is the

average of v(i)
x (t) over the oscillators at time t, and 〈·〉 denotes

the time average over a period of 5 seconds after the initial
transient. To facilitate comparison between different condi-
tions, we normalize evx by the standard deviation of vx calcu-
lated over the 5-second trajectory segment of all oscillators.
The synchronization error Z is then calculated as the average
of the normalized evx over the experimental trials (taken to be
5 in Fig. 2). In Fig. 2(b), for example, the synchronization er-
ror for the homogeneous system is Z = 0.91, whereas for the
heterogeneous system it is Z = 0.04.

To explore the effect of random heterogeneity more system-
atically, we focus on a minimal system of three circuit oscilla-
tors. Figure 3 shows the synchronization error Z in the (τ1, τ2)
parameter space, for τ3 satisfying τ3 = 3− τ1 − τ2. The center
of the image (τ1, τ2, τ3) = (1, 1, 1) corresponds to the homoge-
neous system, which is characterized by a large synchroniza-
tion error. As we move away from the center, Z eventually
decreases to a value closer to zero in all directions. The con-
tours in the figure show the standard deviation σ among the
τi. The synchronization error Z decreases abruptly when σ

becomes larger than approximately 0.05, which indicates that
the oscillator heterogeneity consistently promotes chaos syn-
chronization in our system. Our numerical simulations for the
same network and parameters using the model in Eqs. (1)-(3)
show qualitatively similar transitions to synchronization as the
heterogeneity is increased, further supporting the experimen-
tal findings. These results are presented in the Supplemental
Material [35], where we also show that heterogeneity in the
parameter γi stabilizes synchronization equally well, and that
the phenomenon is also observed experimentally for Chua’s
circuits exhibiting single-scroll chaotic dynamics.

Having shown experimentally that random parameter het-
erogeneity facilitates synchronization, we now present a
theory identifying the general mechanism behind this phe-
nomenon. For a network of identical oscillators, the varia-
tional equation governing the synchronization stability has the
following form:

δẊ = [IN ⊗ DF(x) − kL ⊗ DH(x)] δX, (5)

where δX = (x1 − x, . . . , xN − x)ᵀ is the perturbation vector,
IN is the N × N identity matrix, x is the synchronization tra-
jectory, and ⊗ is the Kronecker product. For simplicity, we
assume the Laplacian matrix L is diagonalizable and, conse-
quently, Eq. (5) can be decoupled by applying a coordinate
transformation Q for which Q−1LQ = λ = diag(λ1, . . . , λN)
[37]. This gives rise to N lower-dimensional equations of the
same form, each corresponding to an independent perturba-
tion mode ξi:

ξ̇i = [DF(x) − kλiDH(x)] ξi, i = 1, 2, . . . ,N. (6)

When oscillators become nonidentical, DF (and DH in the
case of heterogeneous time scales τi) becomes different for
each oscillator.

For small heterogeneity, assuming the change in the syn-
chronization trajectory is negligible, the mismatches in DF
and DH introduce a perturbation matrix ∆(x) in Eq. (5):

δẊ = [IN ⊗ DF(x) − kL ⊗ DH(x) + ∆(x)] δX. (7)

Now, when we apply the transformation matrix Q to Eq. (7),
we get

ξ̇ =
[
IN ⊗ DF(x) − kλ ⊗ DH(x) + ∆̃(x)

]
ξ, (8)

where ξ = (ξ1, ξ2, . . . , ξN)ᵀ and ∆̃ is ∆ under the new coordi-
nates. Dividing ∆̃ into N × N blocks of equal size,

∆̃ =


∆̃11 ∆̃12 · · · ∆̃1N

∆̃21 ∆̃22 · · · ∆̃2N
...

...
. . .

...
∆̃N1 ∆̃N2 · · · ∆̃NN

 , (9)

Eq. (8) can be written as

ξ̇i = [DF(x) − kλiDH(x)] ξi +
∑

j

∆̃i j(x)ξ j. (10)
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FIG. 4. Theoretical predictions based on heterogeneity-induced
mode mixing for the system considered in Fig. 3. (a) Dependence
of the largest Lyapunov exponent Λ on the mixing coefficient ε for
a range of values of coupling strength k in Eq. (11). (b) Depen-
dence of Λ on τi predicted using Eq. (10) under the approximation
of an invariant synchronization manifold. The theoretical prediction
matches well the experimental results in Fig. 3.

Crucially, ∆̃ is generally non-block-diagonal in these coordi-
nates. Comparing Eq. (10) with Eq. (6), it is clear that one
of the main effects of parameter mismatches is the introduc-
tion of interdependence among the (originally independent)
perturbation modes due to off-diagonal blocks in matrix ∆̃.

Consequently, in the presence of random oscillator hetero-
geneity, the perturbation modes ξi are no longer mutually in-
dependent and start to “mix” with each other. This effect is
often ignored in previous attempts to analyze synchronization
in networks of heterogeneous oscillators. For example, the
extended master stability function (MSF) assumes that, under
small parameter mismatch, the variational equation can still be
decoupled into N independent equations, each corresponds to
one of the original perturbation modes ξi [25]. A simple anal-
ysis shows that, within the framework of the extended MSF,
the Lyapunov exponents of each perturbation mode do not de-
pend on oscillator heterogeneity (see Supplemental Material
[35] for details). This motivates us to go beyond the extended
MSF in our theory, and it also justifies our choice to focus on
the effect of heterogeneity-induced mode mixing.

To intuitively understand how the interdependence among
perturbation modes affects stability, consider a network of
identical oscillators that is weakly unstable, which typically
has one unstable and N − 2 stable transverse perturbation
modes. After introducing oscillator heterogeneity, the invari-
ant subspaces of the variational equations are destroyed and
the perturbation modes become interdependent. A perturba-
tion vector initially aligned with the weakly unstable direction
will spend time in other (more stable) directions, which will
lead to an averaging effect that stabilizes all possible pertur-
bations.

To heuristically model this “mixing” effect, we introduce
a mixing coefficient ε that controls the mixing rate between
different transverse perturbation modes ξi. To keep the for-
malism simple, we assume that ε is a constant and that hetero-
geneity causes each transverse mode to “leak” into all other
transverse directions at the same rate ε. The model can be

described as

ξ̇i = [DF(x) − kλiDH(x)] ξi + ε

N∑
j=2

(ξ j − ξi), i = 2, . . . ,N,

(11)
where we used that ε

∑N
j=2(ξ j − ξi) = −ε(N − 1)ξi + ε

∑N
j=2 ξ j.

Here, −ε(N−1)ξi represents mode i “leaking” out of direction
i and ε

∑N
j=2 ξ j represents the other transverse modes “leak-

ing” into direction i. In general, one can expect that the mix-
ing coefficient ε will grow with the magnitude of parameter
mismatches in the system. To eliminate confounding factors,
we made the approximation that the synchronization manifold
remains invariant and use the same synchronization trajectory
as in Eq. (6) for calculating the largest Lyapunov exponent Λ.
Thus, the index i in Eq. (11) runs from 2 to N in order to in-
clude only modes transverse to the synchronization manifold.

Figure 4(a) shows Λ as a function of ε for different values of
k in Eq. (11) and for λi corresponding to the directed ring net-
work used in Fig. 3. As we increase the mixing coefficient ε, Λ

decreases and eventually becomes negative for all relevant k.
In Supplemental Material [35], we further support our theory
by providing an exact correspondence between the parame-
ter mismatches in τi and the mixing matrix ∆̃. This enables
us to explicitly compare the theoretical prediction [Fig. 4(b)]
with experimental results, which show good agreement. Thus,
mode mixing is the dominant contributor to the improved syn-
chronization observed in our experiments and constitutes a
general mechanism through which parameter mismatches in
coupled oscillators can facilitate synchronization.

It is natural to ask: in which classes of systems can we ex-
pect to observe heterogeneity-induced synchronization? The
answer to this question lies on the balance between two com-
peting effects of heterogeneity on synchronization. On the one
hand, we have shown that heterogeneity tends to improve sta-
bility by introducing mixing among the perturbation modes.
On the other hand, the synchronization manifold often be-
comes “fuzzy” (i.e., the trajectory deviates from identical syn-
chronization) when oscillators are nonidentical, and the per-
missible synchronization state deteriorates as heterogeneity is
increased. For example, Ref. [25] shows that when synchro-
nization is stable, the synchronization error increases linearly
with oscillator heterogeneity. Thus, whether coherence in a
network increases or decreases with heterogeneity depends on
which of the two competing effects dominates, rather than on
the details of the node dynamics and network structure.

As a result, the phenomenon of heterogeneity-induced syn-
chronization is expected to apply to a broad class of networked
dynamical systems. To further support this claim, in the Sup-
plemental Material [35] we show that oscillator heterogeneity
can also lead to dramatic improvement of synchronization in
non-autonomous systems describing driven pendulum arrays.
As in the networks of Chua’s oscillators, in this case too the
synchronization trajectory remains qualitatively similar to the
otherwise unstable synchronization trajectory of the homoge-
neous system. Future theoretical work will have the oppor-
tunity to further elucidate the effect of heterogeneity in the
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non-perturbative regime, where the approximate invariance of
the synchronization manifold breaks down and a new notion
of “cohesiveness” among oscillators needs to be developed.

Our demonstration that parameter heterogeneity can enable
rather than halt synchronization has several implications. In
particular, it completes a full circle in revealing the inter-
play between chaos and coupling interactions. Early work
on synchronization between coupled oscillators showed that
sufficiently strong coupling can mitigate sensitive dependence
on initial conditions. By demonstrating that oscillator hetero-
geneity can enable synchronization below the synchronization
transition of identical oscillators, this work shows that, despite
the sensitive dependence on oscillator parameters, parame-
ter heterogeneity can consistently reduce the effective cou-
pling threshold for synchronization. In man-made systems,
this suggests that experimental imperfections may become an
unexpected source of synchronization stability. In natural sys-
tems that rely on synchronization, it also suggests the possi-
bility of observed mismatches being a result of evolutionary
pressure that favors synchronization.
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