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Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using
sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion
anisotropy term proportional to (Sz)2, which plays an important role in stabilizing magnetism for
low-dimensional magnetic materials. Here we explore non-equilibrium spin dynamics and observe
a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and
on-site anisotropy are similar. Our results are supported by many-body numerical simulations and
are captured by the analytical solution of a two-site model.

Mott insulators of ultracold atoms in optical lattices
comprise a widely used platform for quantum simula-
tions of many-body physics [1]. Since the motion of
atoms is frozen out, the focus is on magnetic ordering and
spin dynamics in a system with different (pseudo-)spin
states. As suggested in 2003, Mott insulators with two-
state atoms realize quantum spin models with tunable
exchange interactions and magnetic anisotropies [2, 3].
Experimental achievements for spin-1/2 systems include
the observation of antiferromagnetic ordering of fermions
[4] and the study of spin transport in a Heisenberg spin
model with tunable anisotropy of the spin-exchange cou-
plings [5]. Spin dynamics for S > 1 has also been inves-
tigated [6].

However, all studies thus far have exclusively addressed
spin systems with occupations of one atom per site.
This limits spin Hamiltonians to spin-exchange terms
between different sites i, j proportional to

∑
〈ij〉 S

k
i S

k
j

(where k ∈ {x, y, z}) and to Zeeman couplings to effec-
tive magnetic fields, proportional to

∑
i S

z
i . For Mott

insulators with two or more atoms per site, the Hubbard
model has direct on-site interactions which can give rise
to a nonlinear term D

∑
i(S

z
i )2, where D is the so-called

single-ion anisotropy constant. (Sz)2 terms, which are
present for S ≥ 1 only, are important for establishing
non-trivial correlations, such as in spin squeezing [7]. In
spin-1 models, they can lead to a qualitatively new mag-
netic phase diagram [8, 9]. For example, for ferromag-
netic spin-1 Heisenberg models, the single-ion anisotropy
gives rise to a gapped spin state (the “spin Mott insu-
lator”) that can be used as an initial low-entropy state
for an adiabatic ramp toward a highly-correlated gap-
less spin state (the XY ferromagnet) [10, 11]. For an-
tiferromagnetic systems in one dimension, the single-ion
anisotropy leads to a quantum phase transition between a
topologically trivial phase and a nontrivial phase as pre-
dicted by Haldane [12–14]. Magnetic properties of many
materials crucially depend on crystal field anisotropies
which break rotational symmetry and can stabilize ferro-
magnetism in two-dimensional materials by avoiding the
Mermin–Wagner theorem which forbids long-range order
for continuous symmetries [15, 16]. The interest in spin-1

FIG. 1. Experimental sequence for the measurement of spin
alignment and doublon fractions. (i) The lattices are ramped
up to initialize a single-component Mott insulator with a max-
imal site occupancy of two. (ii) Microwave pulses prepare a
superposition of two hyperfine states (|a〉 − i|b〉) /

√
2. Ramp-

ing down the longitudinal lattice initiates spin exchange dy-
namics. (iii) Ramping up the lattices stops the exchange dy-
namics. Microwave pulses transfer the two components to a
pair of states with a Feshbach resonance. (iv) Either |ab〉 dou-
blons or all doublons are removed with the help of Feshbach-
enhanced inelastic losses. Remaining atoms are transferred
back to the F = 1 hyperfine states and are counted via ab-
sorption imaging to measure Np or Nd.

systems is demonstrated by various studies on different
platforms [17–19].

In this Letter, we use cold atoms in optical lattices to
implement a spin-1 Heisenberg Hamiltonian using a Mott
insulator of doubly occupied sites and demonstrate dy-
namical features that arise from the single-ion anisotropy.
For spin-exchange interactions studied thus far in optical
lattices, the only time scale for dynamics is second-order
tunneling (i.e. superexchange) which monotonically slows
down for deeper lattices. In contrast, as we show here,
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the single-ion anisotropy introduces a new time scale, and
we find a dynamical behavior which is faster in deeper
lattices, due to a resonance effect when the energies of su-
perexchange and single-ion anisotropy are comparable.

We present a protocol to directly measure the
anisotropy in the spin distribution and find pronounced
transient behaviour of this quantity when the resonance
condition is met. Transients change sign along with the
the single-ion anisotropy. We find good agreement with
theoretical simulations, and explain the most salient fea-
tures using a two-site model with an exact solution.

In the Mott insulator regime the optical lattices are
sufficiently deep such that the on-site interaction sup-
presses first-order tunneling, and exchange processes are
only possible via second-order tunneling. For two atoms
per site with two internal states, the Bose–Hubbard
Hamiltonian is approximated by an effective spin Hamil-
tonian

H = −J
∑
〈ij〉

Si · Sj +D
∑
i

(Szi )2 −B
∑
i

Szi , (1)

where Si are spin-1 operators, 〈ij〉 are pairs of nearest-
neighboring sites, J is the exchange constant, D is the
uniaxial single-ion anisotropy constant, and B is a ficti-
tious magnetic bias field. The spin-1 operators are re-
lated to the boson creation/annihilation operators via

Szi = (a†iai − b†i bi)/2, S+
i = a†i bi, S

−
i = b†iai under

the constraint a†iai + b†i bi = 2, where ai and bi are
boson annihilation operators at site i for state a and
state b respectively. In terms of the tunneling ampli-
tude t and interaction energies Uσσ′ : J = 4t2/Uab and
D = (Uaa + Ubb)/2 − Uab, where Uσσ′ represents the
on-site interaction energy between atoms in two states
σ, σ′ ∈ {a, b}. The term proportional to B can be
dropped if the total longitudinal magnetization

∑
i S

z
i

is constant, as it is in the experiment.
For the species studied here, 87Rb, all Uσσ′ differ by

less than 1%, and therefore all spin exchange couplings
are almost equal resulting in isotropic spin Hamiltonians
for site occupancy ν = 1. However, for ν = 2, we can
tune the relevant anisotropy parameter D/J over a large
range of values, because J decreases exponentially with
lattice depth, while D—a differential on-site energy—
slowly increases.

The experimental sequence begins by preparing a
Bose–Einstein condensate (BEC) of 87Rb atoms in the
|F = 1,mF = −1〉 hyperfine state inside a crossed op-
tical dipole trap. It proceeds by loading the BEC into
a deep three-dimensional optical lattice formed by retro-
reflected lasers with wavelengths of λ = 1064 nm. The
lattices are ramped to final depths of 30ER in 250 ms,
where ER = h2/

(
2mλ2

)
is the recoil energy for atomic

mass m. Experimental parameters are chosen to maxi-
mize the size of the ν = 2 Mott-insulator plateau without
significant population of sites with ν = 3 [see Fig. 1(i)
and Ref. [30]].

To allow for spin dynamics, all atoms are rotated into
an equal superposition of two hyperfine states (|a〉 −
i|b〉)/

√
2 using a combination of microwave pulses [30].

This initial state is a simple product state. Negative
and positive values of D are realized with the pairs
|a〉 = |1,−1〉, |b〉 = |1, 1〉, and |a〉 = |1,−1〉, |b〉 = |1, 0〉,
respectively [30]. The spin exchange dynamics in one-
dimensional chains is initiated by a 3-ms quench, during
which we ramp down the longitudinal lattice to a vari-
able depth, while the transverse lattices are ramped up
to 35ER [Fig. 1(ii)]. After a variable evolution time,
the final spin configuration is “frozen in” by ramping the
longitudinal lattice to 35ER as well [Fig. 1(iii)].

Our observable for the anisotropy in the spin distribu-
tion is the longitudinal spin alignment A = S(S + 1) −
3〈(Sz)2〉, measured in the ν = 2 plateau. 〈(Sz)2〉 =∑N
i=1〈(Szi )2〉/N is the average on-site longitudinal spin

correlation. A is defined to be zero for a random dis-
tribution of spins. Since Sz = 1, 0,−1 for the |aa〉, |ab〉
and |bb〉 doublons, respectively, A can be obtained by
measuring the relative abundance of the different dou-
blons. Specifically, we refer to the fraction of |ab〉 dou-
blons as the “spin-paired doublon fraction” f . Since
〈(Sz)2〉 = 1 − f , we obtain A = 3f − 1. The doublon
statistics can be measured by selectively introducing a
fast loss process that targets a specific type of doublon,
and by comparing the remaining total numbers of atoms,
which are measured via absorption imaging. Specifically,
if Na is the average total atom number in the whole
cloud, Np the average number of remaining atoms af-
ter removing |ab〉 doublons, and Nd the average num-
ber of remaining atoms after removing all doublons, then
f = (Na−Np)/(Na−Nd) [Fig. 1(iv)]. Fast losses of dou-
blons are induced by transferring the atoms to hyperfine
states for which inelastic two-body loss is enhanced near
two narrow Feshbach resonances around a magnetic field
of 9 G [20, 30]. Since f and A are obtained from the
ratio of differences in atom numbers, good atom num-
ber stability in the experiment (the deviation from mean
being typically < 4 %) was crucial to measure A with
sufficiently small uncertainties.

For the initial state, f = 1/2 and A = 1/2. Over
times that are long compared to spin exchange time scale
h̄/J , heating processes drive the system towards thermal
equilibrium with A = 0. At short times, coherent spin
dynamics is observed: If D is negative, the |aa〉 and |bb〉
doublons are energetically favorable, and we expect f and
A to decrease. If D is positive, the |ab〉 doublons are fa-
vorable and we expect f and A to increase. If D is zero,
the system is described by an isotropic spin-1 Heisenberg
Hamiltonian of which the initial state is an eigenstate.
By fixing the hold time and scanning the value of the
lattice depth for the spin chains, we can monitor the im-
pact of D/J on the dynamical change in A. For positive
(negative) D, we chose a hold time of 70 ms (25 ms).
These hold times are chosen to be comparable to h̄/J
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FIG. 2. Transient enhancement and reduction of the spin
alignment A by coherent spin dynamics. The change in A is
strongest when |D/J | ∼ 2. Measurements were done for both
positive (top) and negative (bottom) values of D/J . The
atoms were held for 70 ms and 25 ms, respectively (also see
Fig. 4). The top axis in both figures indicates the D/J ratio.
Solid lines are the results of MPS-TEBD calculations. The
error bars represent the standard error of the mean for A,
obtained by error propagation after averaging three measure-
ments for each of Na, Np, and Nd. We found fluctuations in
prepared atom number to dominate over the systematic er-
rors. For the lowest lattice depths, the spin model may not
fully represent the Bose–Hubbard model.

when |D/J | ∼ 1 [30].
Figure 2 shows that for |D/J | � 1 or |D/J | � 1,

A stays near its initial value of 1/2. However, when
D/J ∼ 2, which corresponds to a longitudinal lattice
depth of 14ER (11ER) for positive D (negative D), we
see that A reaches a maximum (minimum). This non-
monotonic change of A with lattice depth is indicative
of the interplay between spin exchange and single-ion
anisotropy. In addition, we observe that the change in
A is smaller for positive D than for negative D.

Several aspects of the observed spin dynamics can be
captured by a two-site model. Although states on two
spin-1 sites span a 9-dimensional Hilbert space, we can re-
duce the spin dynamics to a beat note between two states.
Since exchange interactions do not change the total mag-
netization

∑N
i=1 S

z
i , the Hilbert space factorizes to sub-

spaces with the same total magnetization (although Szi
can differ within a subspace). Furthermore, the initial
superposition state is symmetric between the left and
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FIG. 3. Coherent spin oscillations in a two-site model. While
the full basis contains nine states, the oscillations in the spin
alignment A involve only a 2 × 2 block of the Hamiltonian.
This allows us to illustrate the dynamics on Bloch spheres
(left), where the initial state is represented by the open cir-
cle. If J = 0 the effective magnetic field points along ẑ,
and the purely azimuthal precession will not change A. If
J > 0 the effective magnetic field is tilted, resulting in a
precession along the dashed circle which is observed as an
oscillation in A (right). The frequency of the oscillation, in

units of J/h̄, is given by Ω =
√

9 + 4D/J + 4 (D/J)2, and its

peak-to-peak amplitude is 6 (D/J) /
[
9 + 4D/J + 4 (D/J)2

]
(see inset). This shows that the direction of oscillation de-
pends on the sign of D/J (compare top and bottom rows,
where D/J = 0.5 and −0.5, respectively). Note that while
the initial value of A for this subspace is 1, the contribution
of other states sets the initial A of the whole system to 1/2.

right wells, and any change in A comes from the two cou-
pled states: |ab〉L|ab〉R and (|aa〉L|bb〉R+|bb〉L|aa〉R)/

√
2,

for which A equals 2 and −1 respectively (Fig. 3). By
describing these two states as two poles on a Bloch
sphere, we see that the initial state is represented by
a vector pointing somewhere between the north pole
and the equator with a vertical fictitious external field.
The quench in J and D suddenly changes the strength
and the orientation of this external field and induces a
precession of the state vector around the new external
field [30]. This results in an oscillation of A with am-

plitude 6 (D/J) /
[
9 + 4D/J + 4 (D/J)

2
]
. This function

has local extrema for D/J = ±3/2, but is not symmet-
ric around D/J = 0. This explains the non-monotonic
behaviour as a function of lattice depth, and shows why
the contrast is smaller for positive D/J than for negative
D/J .

One would expect that for a larger number of sites,
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additional precession frequencies appear, turning the pe-
riodic oscillation for two sites into a relaxation towards
an asymptotic value, which, according to the eigenstate
thermalization hypothesis, represents a low-temperature
equilibrium [21]. Comparison between the two-site model
and a many-site model numerically simulated using the
time-evolving block decimation for matrix-product states
(MPS-TEBD) shows that the initial change in A is in-
deed well captured by the two-site model [30]. Due to the
spin dynamics, the system evolves from a product state
into a highly correlated state with entanglement between
sites; this has been the focus of recent theoretical works
[22, 23]. In the two-site model, the von Neumann en-
tanglement entropy can reach up to ∼ 0.9 × ln (3) due
to the interplay between single-ion anisotropy and ex-
change terms. This corresponds to an almost maximally
entangled state since ln (3) is the maximum entropy for
a spin-1 site.

To show that changes in the spin alignment A result
from competition between the exchange interaction and
the single-ion anisotropy, we study the time evolution of
A at two different lattice depths (Fig. 4). For positive D,
MPS-TEBD simulations predict very little change in A
at a lower lattice depth, where the exchange constant is
relatively large, but the anisotropy is small, while it pre-
dicts a noticeable change in A at a higher lattice depth,
where the exchange constant and the anisotropy term be-
comes comparable. While the simulation predicts equi-
libration of A to an asymptotic value (thin lines), mea-
surements show that it decays toward a lower value for
positive D and does not decrease as much as the simu-
lation prediction for negative D. The measurements are
consistent with the fact that at high spin temperature,
the spin distribution becomes isotropic and A vanishes.
Indeed, when we ramp down the lattices and retrieve a
Bose–Einstein condensate, we observe a significant reduc-
tion of condensate fraction after 300 ms. This represents
the timescale over which entropy is either transported
through the cloud, or created by heating. It could possi-
bly be extended by better stabilizing ambient field fluctu-
ations, or by adding a tilt to suppress entropy transport
by holes [24].

In conclusion, we have implemented a spin-1 Heisen-
berg model with a single-ion anisotropy using the ν = 2
plateau of a Mott insulator, and have observed the subtle
interplay between spin exchange and on-site anisotropy
in coherent spin dynamics. Much larger values of D can
be implemented with spin-dependent lattices, which will
allow us to observe much faster anisotropy-driven dy-
namics, and will also enable mapping out the phase dia-
gram of the anisotropic spin Hamiltonian [11]. It should
also be noted that it is possible to change the sign of J
with the gradient of an optical dipole potential [24, 25],
which will permit exploration of the antiferromagnetic
sector with bosons. Interesting dynamical features of
anisotropic spin models have been predicted [26] includ-
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FIG. 4. Coherent dynamics of the spin alignment A after a
quench in D/J . Varying the hold time at characteristic lattice
depths for both positive and negative values of D/J (top and
bottom pairs of panels, respectively) reveals that strong tran-
sients in A only occur at intermediate lattice depth for which
D and J are comparable. The vertical, dash-dotted lines indi-
cate the hold times used for these pairs in Fig. 2. Dashed lines
are the results of the MPS-TEBD simulation. The shaded
regions denote the MPS-TEBD results with ±0.5 ER uncer-
tainty in the lattice depths, and include exponential decay
towards a thermal spin state with A = 0 with empirical 1/e
times of 350 ms (D > 0) and 175 ms (D < 0), the ratio
of which reflects the relative sensitivity to ambient magnetic
field fluctuations of the pairs. The error bars are computed
in the same manner as those in Fig. 2.

ing transient spin currents, implying counterflow super-
fluidity.

Regarding quantum simulations, single-ion
anisotropies play a crucial role in magnetic materi-
als (e.g. monolayers containing chromium [27, 28]). In
such materials, crystal field effects lift the degeneracy
of d-orbitals, and spin-orbit interaction transfers this
anisotropy to the electronic spins responsible for the
magnetism [29]. Here we have simulated this anisotropy
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by selecting a pair of atomic hyperfine states where
the interspecies scattering length is different from the
average of the intraspecies values. This illustrates
the potential for ultracold atoms in optical lattices to
implement idealized Hamiltonians describing important
materials.
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