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Many neutron star (NS) properties, such as the proton fraction within a NS, reflect the symmetry energy
contributions to the Equation of State that dominate when neutron and proton densities differ strongly. To
constrain these contributions at supra-saturation densities, we measure the spectra of charged pions produced by
colliding rare isotope tin (Sn) beamswith isotopically enriched Sn targets. Using ratios of the charged pion spectra
measured at high transverse momenta, we deduce the slope of the symmetry energy to be 42 < L < 117 MeV.
This value is slightly lower but consistent with the L values deduced from a recent measurement of the neutron
skin thickness of 208Pb.

Recent gravitational wave measurements of the neutron
star merger event GW170817 provide information about the
deformability of neutron stars (NS) [1, 2]. Analyses of
the gravitational wave signal reveal that this deformability
mainly reflects the nuclear Equation of State (EoS) at den-
sities of about twice the saturation density of nuclear matter,
ρ0 ≈ 2.4 × 1014 g cm−3 or 0.16 fm−3. While the GW170817
observations provide key insights into NS and their mergers,
they do not reveal how the NS EoS depends on the abun-
dances of its constituent neutrons, protons, ∆ resonances, and
pions [3–12]. To understand what is the prevailing form of
matter in the NS outer core, such microscopic information is
essential.

Microscopic information about the EoS has only been
extracted from laboratory experiments. Measurements of
nucleus-nucleus collisions have constrained the EoS for sym-
metric matter comprised of equal proton, ρp , and neutron, ρn,
densities for total densities ρ = ρn+ρp of ρ0 ≤ ρ ≤ 4.5ρ0 [13–

15]. The main challenge at ρ > ρ0 is to understand the sym-
metry energy, which describes how the EoS depends upon
isovector potentials that have the opposite sign for neutrons
as for protons and depend linearly on the difference between
neutron and proton densities (ρn − ρp), or equivalently on the
isospin asymmetry δ = (ρn − ρp)/ρ [3, 7, 9, 16–18].
The symmetry energy has been constrained at sub-saturation

densities using a variety of nuclear structure and reaction ob-
servables [16, 17, 19]. To probe higher densities, one must
study central collisions between two complex nuclei. At inci-
dent energies of about 300 AMeV and above, nuclear matter
can be compressed to densities approaching 2ρ0 [20]. The
isovector mean field potentials cause the flow of neutrons emit-
ted from this dense region to differ from the flow of protons;
this difference provides an observable that can constrain the
symmetry energy [18, 21].
In these dense regions, nucleon-nucleon inelastic collisions

produce ∆ baryons that decay to nucleons by emitting pi-
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ons. From the ∆ production and decay cross sections, one
expects the ratio M(π−)/M(π+) of the multiplicity (M) of neg-
atively and positively charged pions per collision to be pro-
portional to (ρn/ρp)2 [18, 22]. Because the ratio (ρn/ρp)
strongly reflects the isovector mean field potentials within
this dense region, both the total pion multiplicity yield ratio
M(π−)/M(π+) [18, 23] and the dependence of the pion ratio on
pionmomentum [23–25], reflect the density dependence of the
symmetry energy. Existing studies of M(π−)/M(π+) [26, 27]
with stable nuclear beams have not provided a consistent con-
straint on the symmetry energy at supra-saturation densities,
ρ > ρ0. This may result from different assumptions for the ∆
and pion potentials that cause the calculated low energy pion
spectra, the M(π−)/M(π+) ratios and the symmetry energy
constraints to differ [28].

Powerful new radioactive isotope facilities are being built
to investigate how nuclei and the nuclear EoS depend on
δ = (ρn− ρp)/ρ [16, 18, 29]. Here we present results from the
first experiment at these new facilities to probe the symmetry
energy at high density with radioactive beams. In this exper-
iment, beams of 132Sn, 124Sn, 112Sn, and 108Sn projectiles at
270 AMeV incident energy bombarded isotopically enriched
(>95%) 124Sn and 112Sn targets of 608 and 561 mg cm−2 areal
density at the Radioactive Ion Beam Factory (RIBF) in Japan.
Light charged particles, including π− and π+ mesons, were de-
tected in a new device, the SπRIT Time Projection Chamber
(TPC), placed inside the SAMURAI spectrometer [30].

Previous publications describe the design and performance
of the SπRITTPC [31–33], its trigger systems [34], electronics
readout system [35], and analysis software [36, 37]. To mea-
sure minimum ionizing pions as well as isotopically resolved
H, He, and Li isotopes, we expanded the typical dynamic range
of the TPC electronics by a factor of 5 [38]. To seamlessly
measure pions over the essential range of scattering angles, we
placed the target at the entrance of the TPC and corrected for
space charge effects from the beam traversing the TPC [39].

Charged particles were identified by their electronic stop-
ping powers dE/dx and magnetic rigidities [36]. To optimize
momentum resolution, pion data are measured at azimuthal
angles −40° < φ < 25° ∪ 160° < φ < 210°, where the
pion momenta are mainly perpendicular to the magnetic field.
Clean pion identification was achieved. We utilize φ inde-
pendence and interpolate the pion spectra to other azimuthal
angles where the momentum resolution would be inferior. We
fit the dE/dx distributions for each momentum bin to deter-
mine the particle yield and the background contribution.

We focus on the most central collisions with the highest
charged particle multiplicities corresponding to impact pa-
rameters of b < 3 fm [33]. Electrons and positrons from the
Dalitz decay of π0 are the largest contributions to the pion
background and have been subtracted as detailed in Ref. [40].
These background contributions are insignificant.

The TPC pion acceptance in the current experiment allows
energy of pions to be accurately measured down to 0 MeV in
the center-of-mass of the total system (CM).We focus on pions
measured to polar angles of θCM < 90° with respect to the
beam where pion acceptance is complete. This angular cut
is also applied to the theoretical calculations discussed later.

We calculate the efficiency by embedding Monte-Carlo pion
tracks into real events and determining the fraction of these
tracks that are accurately reconstructed. We used a calibration
beam composed of hydrogen isotopes at well known momenta
to check the momentum determination of the TPC. The mo-
mentum values obtained by using the TPC design geometry
and SAMURAI dipole magnetic field agreed to within 1% of
the known values [41]. The estimated systematic uncertainties
are 4% for the individual pion spectra and 2% for the single
and double ratios of charged pion spectra. These uncertainties
are incorporated into the discussion below.
The total π− and π+ multiplicities and their ratios for cen-

tral (b ≈ 3 fm) 132Sn + 124Sn, 112Sn + 124Sn, 108Sn + 112Sn
collisions are published in Ref. [42]. Comparisons of the total
pion ratios predicted by seven different theoretical calculations
exhibit differences among them that exceed their sensitivity to
the symmetry energy. Different assumptions regarding the
mean field potentials for ∆ baryons and pions can strongly in-
fluence the production of low energy pions and thus the total
charged pion multiplicities and their ratios [28]. To reduce
this sensitivity, we focus on pion spectra at higher momenta
where sensitivity to the isospin dependence of the nucleonic
mean fields dominates [28]. Using the pion spectral ratios
at high transverse momenta, we obtain a correlated constraint
at supra-saturation densities on the symmetry energy and the
momentum dependence of the isovector nucleonic mean field
potentials.
For our investigations, we use the dcQMD semi-classical

Quantum Molecular Dynamics (QMD) model of Ref. [28].
This model has provided constraints on the symmetry energy
from neutron and proton elliptic flow measurements [21] and
from pion production [27, 43]. It also provides reasonable
predictions of the pion multiplicities and ratios for the current
experiment [42]. A unique aspect of the dcQMD model is
the implementation of the conservation of total energy for the
system, which is not simply satisfied at the two-body level due
to the momentum and isospin asymmetry dependence of inter-
actions. This involves modifying the collision term to allow
for energy transfer between scattering particles and the rest
of the system, leading to shifts of particle production thresh-
olds [27, 44, 45]. With this correction, consistent constraints
for the symmetry energy density dependence were obtained
from pion production and elliptic flow [27]. Further details of
this model can be found in Refs. [21, 27, 28, 43].
At beam energies of 270 AMeV, high energy pions are pri-

marily produced by exciting∆ (1232) baryons via two-nucleon
N +N → N +∆ inelastic scattering processes. These ∆’s may
scatter elastically or inelastically via N + ∆ → N + ∆′ or de-
cay via ∆ → N + π producing pions. Pions, in turn, can be
absorbed via π + N → ∆. Details of the ∆ resonance produc-
tion parameterization and its modification in nuclear medium
can be found in Refs. [46, 47]. The present calculations re-
quire realistic binding energies per nucleon, charge radii and
neutron skins for projectile and target nuclei and a good quan-
titative description of the experimental stopping, directed flow
and elliptic flow observables [48, 49]. These prior analyses
are consistent with the isoscalar effective mass m∗/m = 0.7,
compressibility modulus K0 = 245 MeV [28] and in-medium
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elastic nucleon-nucleon cross-sections [50] used here.
The Gaussian wave functions for nucleons and pions in

dcQMDhave widths that reflect the experimental ratio of pion-
to-proton charge radii [43]. Pions move under the influence
of the Coulomb interaction and S and P wave pion optical
potentials calculatedwith the “Batty-1” parameters of Ref. [43,
51]. We find that the usual Ansatz of setting the ∆ potential
in nuclear matter equal to that of nucleons leads to incorrect
π− and π+ production thresholds and total multiplicities [28,
42]. Therefore, we adjust the potential depths at saturation
density and effective masses in the iso-scalar and iso-vector
channels [28] of the ∆ to reproduce experimental total pion
multiplicities and mean kinetic energies.

In dcQMD, the nuclear EoS is defined in terms of the energy
per nucleon and is given by [52]:

E
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Here, KE(ρ, δ) is the kinetic energy density, followed
by four local potential energy terms that depend on den-
sity ρ and asymmetry δ. The final non-local term mod-
els Pauli exchange terms and the finite range of nucleon-
nucleon interactions. Parameter D controls the compress-
ibility K0 = 245 MeV and skewness Q0 = −350 MeV of sym-
metric matter, and x and y controls slope L and curvature
Ksym parameters of the symmetry energy S(ρ). We correlate
L and Ksym via Ksym = −488 + 6.728 × L (MeV) and also set
S(ρ = 0.1 fm−3) = 25.5 MeV, consistent with nuclear mass
and radius measurements [53? , 54].

The left and right panels of Fig. 1 show the CM transverse
momentum spectra dM/dpT at θCM < 90° for the very neu-
tron rich 132Sn + 124Sn and the nearly symmetric 108Sn + 112Sn
systems, respectively. The difference in the pT values for the
maxima of the π− and π+ spectra reflects the influence of the
Coulomb interaction. The calculations with L = 80 MeV,
shown in the figure have been fitted to the total multiplicities
by optimizing the ∆ potentials and effective masses. Here,
the scaled difference between neutron and proton effective
masses, ∆m∗np/δ = [m

∗
n − m∗p]/(mδ) is set to zero. The red

curves show the resulting calculations including pion opti-
cal potentials while the blue curves show calculations where
pion potentials are removed. Simulations without the pion
optical potential result in a significant underprediction of the
pion spectra at low pT and that extends over a larger range of
momenta in the case of the π+ spectra in both reactions. How-
ever, the shapes of the spectra at higher transverse momentum
pT >200 MeV c−1 are largely unchanged by the choice of ∆
and pion optical potentials, and remain sensitive to the nucle-
onic mean field potentials and to the symmetry energy [28].
Such sensitivities to the details in pion and ∆ potentials for the
low energy pions could account for the differences in transport
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FIG. 1. Measured and calculated pion spectra. The red lines are the
calculated pion spectra after adjusting the∆ potential to reproduce the
pion multiplicities. The blue lines differ from the red lines in that the
the pion optical potential has been removed. The nucleon potentials
in these simulations correspond to L = 80 MeV and ∆m∗np = 0.

code predictions for the total pion yields reported in Ref. [42].
Next, we focus on the isovector mean field potentials

that contribute to the symmetry energy and are opposite in
sign for neutrons vs. protons and π− vs. π+. We high-
light these isovector potentials by constructing the single ra-
tio SR(π−/π+) = [dM(π−)/dpT ]/[dM(π+)/dpT ]. In Fig. 2,
SR(π−/π+)132+124 for the neutron rich 132Sn + 124Sn system is
shown in the top panel and SR(π−/π+)108+112 for the nearly
symmetric 108Sn + 112Sn systems in the bottom panel. The
steep rise in the single ratios at low pT originates from the
opposite Coulomb forces experienced by π− and π+.

We construct the pion single spectral ratios using dcQMD
with 12 sets of calculationswith values for L of (15, 60, 106 and
151 MeV) and ∆m∗np/δ of (-0.33, 0 and 0.33). For clarity, we
show only four calculations with (L, ∆m∗np/δ) = (60, -0.33),
(60, 0.33), (151, -0.33) and (151, 0.33) represented by blue
solid, blue dashed, red solid and red dashed curves respectively.
All calculations under-predict the data at pT < 50 MeV c−1 and
over-predict the data at pT ≈ 150 MeV c−1 for both systems.
As expected, the neutron rich system of 132Sn + 124Sn displays
much more sensitivity at high pT to the slope of the symmetry
energy, L, than does the nearly symmetric 108Sn + 112Sn sys-
tem. The disagreement with data observed at low pT for both
systems suggests some inaccuracy in the theory that does not
depend strongly on the asymmetry δ. Such effects could orig-
inate from inaccuracies in the treatment of Coulomb interac-
tions or of the pion optical potentials above saturation density,
for example. Non-resonant pion emission or absorption, ne-



4

pT (MeV/c)

100

101

Si
ng

le
 R

at
io

 (S
R

)
132Sn + 124Sn, E/A = 270 MeV

0 100 200 300 400
pT (MeV/c)

100

101

Si
ng

le
 R

at
io

 (S
R

)

108Sn + 112Sn, E/A = 270 MeV

       L(MeV)   m *
np

60          -0.33
60           0.33
151        -0.33
151         0.33

FIG. 2. Single pion spectral ratios for 132Sn+124Sn (top panel) and
108Sn+1124Sn (bottom panel) reactions. The curves are dcQMD
predictions from different L and ∆m∗np values listed in the top panel.

glected in the current calculations, could also contribute to the
incorrect shape of the single spectral ratios at low pT in Fig. 2
and its influence should be investigated. These effects should
be much less important above 200 MeV c−1 where the trends
of the data and the calculations become more comparable.

Interpolating the dcQMD calculations, we fit the single ra-
tios at pT > 200 MeV c−1 and extract correlated constraints
on L and ∆m∗np/δ shown in Fig. 3. The correlated nature of
this constraint means that larger values for ∆m∗np would imply
larger values for L. Absent any constraint on ∆m∗np , the best
fit value is L = 79.9 ± 37.6 MeV with S0 = 35.3 ± 2.8 MeV,
with statistical uncertainty making the largest contribution to
the total uncertainty. This value is consistent with constraints
extracted from proton and neutron elliptic flows in Ref. [21]
using the same transport model.

Since both reactions have the same total charge, ap-
proximately the same isoscalar fields and differ prin-
cipally by their asymmetry δ, the double ratio,
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FIG. 3. Correlation contours between L and ∆m∗np/δ extracted from
the single pion spectral ratio of the neutron-rich 132Sn+124Sn and
near symmetric 108Sn+112Sn reactions. The green shaded region
lies within the 68% confidence level for data with pT > 200 MeV/c.
The dotted blue lines denote contours corresponding to the 95%
confidence level.
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FIG. 4. Transverse momentum spectra of the double pion ratio.
The shaded region covers dcQMD predictions within 1σ of the most
probable values of L and ∆m∗np values.

DR(π−/π+) = SR(π−/π+)132+124/SR(π−/π+)108+112, should
primarily reflect the isovector mean fields that determine the
symmetry energy. Experimentally, the double ratio cancels
out most of the systematic errors but the statistical errors prop-
agate. The current uncertainties in the double ratios shown
in Fig. 4 are large and thus offer less precise constraints than
single ratios. Nonetheless, the data are statistically consistent
with the predictions indicated by the shaded area allowed by
the 1-σ range of the L values (49-105 MeV) assuming themost
probably value of ∆m∗np/δ = 0.
Additional measurements would reduce the uncertainties of
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this constraint. These include pionmeasurements at higher and
lower incident energies to constrain non-resonant pion emis-
sion and the interactions of ∆ baryons with nuclear matter.
Precise measurements of the ratios of neutron and proton en-
ergy spectra should constrain ∆m∗np more accurately removing
an important contribution to the present uncertainty. Comple-
mentary measurements of proton and neutron elliptic flow are
also desirable. Finally, ongoing efforts in transport theory by
the Transport Model Evaluation Project (TMEP) collaboration
(e.g. Ref. [55])would allow amore comprehensive exploration
of the equation of state of dense neutron-rich matter via heavy
ion collisions.

In conclusion, we present precise spectra of charged pions
produced in intermediate energy collisions involving rare iso-
tope Sn beams on isotopic Sn targets and use them to constrain
the symmetry energy at supra-saturation densities. To avoid
complications resulting from poorly constrained ∆ baryon po-
tentials and non-resonant pion emission that are currently dif-
ficult to model, we focus our analyses on energetic pions with
pT > 200 MeV/c and obtain symmetry energy constraints of
42 < L < 117 MeV and 32.5 < S0 < 38.1 MeV. These L
values are smaller than the values, L = 106 ± 37 MeV and
S0 = 38.3±4.7 MeV [56], extracted from a new measurement
of the neutron skin thickness of 208Pb [57] but close to the
values 70 < L < 101 MeV and 33.5 < S0 < 36.4 MeV [58] ex-
tracted from charge exchange and elastic scattering reactions.
We note that both the PREXII and charge exchange results
are extrapolated from sub-saturation density, while the pion

results are extrapolated from supra-saturation density. These
L values are larger than the L values [59, 60] influenced by
NS deformability [1, 2] and radius [61, 62] measurements.
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