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Causality and the generalized laws of black hole thermodynamics imply a bound, known as the
Bekenstein—Hod universal bound, on the information emission rate of a perturbed black hole. Using
a time-domain ringdown analysis, we investigate whether remnant black holes produced by the
coalescences observed by Advanced LIGO and Advanced Virgo obey this bound. We find that the
bound is verified by the astrophysical black hole population with 94% probability, providing a first
confirmation of the Bekenstein—Hod bound from black hole systems.

Introduction— Black holes (BHs) are fascinating objects
that have been a fruitful ground for theoretical explo-
ration of the frontiers of physics. Their consideration
within the general theory of relativity (GR) has led to
many surprising results including the inescapable presence
of a singularity inside the horizon, the cosmic censorship
conjecture, BH uniqueness and final state conjecture,
break—down of classical physics near a singularity, and
the information paradox [IHI4]. They are thus of central
interest for hints of “new physics”; BH dynamical pro-
cesses could hint to new particles [I5] or to deviations
from semiclassical physics predictions already at macro-
scopic distances from the horizon [I6, I7]. The advent
of gravitational-wave (GW) astronomy has given access
to regimes where the unique properties of BHs can be
observationally tested. Here, we present a new observa-
tional result on the information emission mechanism of
perturbed BHs.

The information emission rate of a physical system de-
pends on its geometry, on the message carrier, and on the
dynamics responsible for the signal. Despite the details, a
universal limit on the information rate exists [I§]. Hod’s
argument stems from a result due to Bekenstein [I9] con-
cerning the maximum amount of information that can be
stored in a static system. Assuming the generalized sec-
ond law of thermodynamics and the principle of causality,
Bekenstein derived a universal bound for the maximum
average rate of information emission achievable by a
physical system:

T FE
Aln2’ (1)

Imam =

where F is the statistical mean energy of the system and
the dot stands for time derivative. A similar bound, whose
validity was restricted to noisy channels, was obtained by
Bremermann [20], building upon the foundational work
of Shannon [21]. Hod argued that Eq. (1)) could be recast
in the form [I§]:
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where T is the Hawking temperature [I4] of the BH and
wr := 1/7 is its inverse relaxation time. This is the
Bekenstein-Hod universal bound. Hod further noted that
this result also applies to the ringdown phase of a BH re-
laxing towards equilibrium. As a consequence of the final
state conjecture [3H12], asymptotically-flat perturbed BHs
radiate away all their anisotropies [22] 23] and quickly
relax towards a stationary Kerr-Newman spacetime, char-
acterized by only three parameters: mass, spin and charge.
The corresponding GW signal, after an initial burst of
radiation dependent on the perturbation, can be repre-
sented as a sum of damped sinusoids forming a spectrum
of discrete complex frequencies characteristic of the sys-
tem. This spectrum is solely determined by the intrinsic
properties of the spacetime and does not depend on the
details of the perturbation. The corresponding spacetime
modes are known as quasinormal modes (QNMs) and the
emission process is referred to as ringdown [24H28]. In the
presence of a ringdown, the relaxation time in Eq. can
be taken as the imaginary part of the least damped QNM
[18]. Assuming that the BH under consideration gener-
ates a Kerr spacetime, thus neglecting electrical charge,
the temperature can be expressed as a function of the BH
mass and spin.

The direct observation of a ringdown phase provides
an agnostic measurement of the relaxation time of the
newly-born BH, and thus allows us to test Eq. . We
proceed to perform a combined analysis of the remnant
objects produced by the BBH mergers detected by the
LIGO-Virgo Collaboration [29-32] to place the first
experimental constraint on the Bekenstein-Hod bound.
The result we find is in agreement with the bound
predicted by GR, BH thermodynamics, and information
theory.

Throughout this Letter, c = G = 1 units are used. Unless
otherwise specified, when discussing parameters point
estimates, we quote median and 90% credible levels.

The bound in the literature- Eq. (2)) is respected
by classical linear perturbations on BH spacetimes



in GR, as shown by Hod [I8, B3H36]. Not only do
BHs comply with this bound, they saturate it in the
limit of extremal spin, implying that BHs can be
regarded as the fastest dissipating objects (for a given
temperature) in the Universe [33]. In the extremal spin
limit, the temperature of the BH approaches zero and the
relaxation timescale increases in an unbounded fashion.
The colder a system gets, the longer it takes to return
to its equilibrium state. This is a direct consequence
of the third law of thermodynamics: no system can
reach a zero-temperature state in a finite amount of
time. The equivalent law in BH dynamics, preventing a
BH to reach its extremal spin value (which would also
violate the Cosmic Censorship, see [37] Chapter 15), was
proven by Carter [38]. The family of BHs that attains
the fastest relaxation rate are Reissner-Nordstrom BHs
with @ ~ 0.726 [36]. A looser bound for classical systems
(with the same functional form as the Bekenstein-Hod
bound) can be derived through statistical arguments, the
laws of quantum mechanics, and thermodynamics, see
Ref. [39]. Classical systems are not expected to saturate
this bound, while systems where quantum fluctuations
dominate do. Extremal Kerr BHs saturate the bound,
posing the question of whether thermal fluctuations
of a BH can be treated thermodynamically or if they
should described similarly to quantum fluctuations.
They can indeed be treated thermodynamically [40].
Although the ringdown of a perturbed BH is classical,
the bound implicitly assumes a quantum theory via
Hawking’s temperature [41] and the interpretation of the
information as entropy, hence as a statistical quantity
(e. g. Ref. [42], Chapter 11). A similar bound on the
rate of chaos growth was derived in Ref. [43] within the
context of thermal quantum systems. The connection
between this latter result and the Bekenstein-Hod bound
is shown (at least in the Schwarzschild case) by recalling
that for an unstable circular null geodesics of any static,
spherically symmetric, asymptotically flat spacetime, in
the eikonal limit the Lyapunov exponent of the system
approaches the imaginary part of the QNM, that is,
A ~ wy [44]. Finally, the bound has recently been shown
to provide a proof of the Strong Cosmic Censorship
Conjecture of dynamically formed BHs [45].

For discussions on the interpretations of the bound, see
Ref. [46].

Analysis— The Bekenstein-Hod universal bound has
drawn much attention not only due to its connections
between information theory and BH thermodynamics,
but also in relation to the viscosity-entropy bound [47].
However, an experimental verification of this bound on
BH systems is still missing. The discovery of GW from
binary black holes (BBH) has given direct access to the
intrinsic properties of dynamical spacetimes [31], [32] 48
53]. GW observations constrain both the relaxation
time (in an agnostic, semi-model independent fashion)

and the mass and spin characterizing the remnant Kerr
spacetime, allowing to directly verify the information
emission bound. We will first detail our method using
GW150914, and later extend our analysis to the BBHs
reported from the LIGO-Virgo collaborations [53].

Analysis of GW150914— The first BBH coalescence [48]
signal can be used to assess how an individual detec-
tion from current ground-based detectors constrains the
Bekenstein-Hod bound.

To verify Eq. (2), the first ingredient is an agnostic
estimation of the remnant relaxation time. This timescale
drives the evolution of spacetime after the two progenitors
coalesced and merged to form a single object, which then
approaches equilibrium through the emission of damped
normal modes characteristic of the system. We can obtain
such an agnostic measurement employing the pyRing
pipeline [53H55]. We describe LIGO data, D, around
GW150914 as a zero-mean wide-sense-stationary gaussian
process (see [49] for a validation of this hypothesis) and
use a template described by a single damped sinusoid.
The template choice reflects our semi-model-independent
approach, i.e., we assume that the relaxation is driven
by an exponential decay, without imposing any other
prediction of GR. We thus allow for the possibility that
the remnant is a compact object mimicking a BH [56H59)
with properties, like the relaxation time and the ringdown
emission amplitudes, that might differ from a Kerr BH.
Since the relaxation time of the BH is dictated by the
longest lived mode, we ignore the full post-merger signal
where shorter lived modes might play a role [563, 55 [60-
67] and we begin the analysis at t = 10 M after the GW
strain peak, where My is the mass of the remnant BH
in geometrical units. This analysis yields 7 = 4.8737 ms.
Full details can be found in Ref. [53] and its associated
data release [68].

Next, we need an estimate of the remnant mass and spin.
Measurements of the initial masses and spins of the pro-
genitors can be used to predict the remnant mass and adi-
mensional spin (ay), by modeling the emission of energy
and angular momentum [69-71]. We use public samples on
progenitors parameters [72], yielding M; = 68.0 fg:gM@,
a; = 0.68700% Since the mass dependence simplifies
between the damping time and the temperature, the
bound does not directly depend on the redshift. To avoid
specifying a cosmology, all the quantities are consistently
computed in the earth-based ”detector frame”, redshifted
by a factor (142z) with respect to the frame of the emitting
source.

From these values, we infer a posterior distribution for
the H parameter (Fig. , red solid line), evaluating the
probability that it obeys the constraint (Fig. , yellow
vertical line). The probability P(H < 1|D) is equal to
91%. The statistical uncertainty is dominated by the
measurement of the relaxation time. This can be seen
in the following way. Instead of measuring 7, we can



assume that the ringdown emission corresponds to the
least-damped mode, (¢, |m|,n) = (2,2,0), as predicted by
GR [27,[73H76], thus fizing T as a function of the remnant
mass and spin, and eliminating its related uncertainty.
This yields the black distribution shown in Fig. . As
expected when enforcing GR relations, the values of H
completely fall below the predicted bound, yielding a
narrower distribution, confirming that the uncertainty is
indeed dominated by the measurement of 7. For com-
parison, we plot in blue the prior distribution imposed
on H by the standard priors on the remnant parameters
employed in the LIGO-Virgo collaboration (LVC) BBH
analyses [32 [53]. These are uniform on the damping time,
while on the remnant mass and spin are determined by
assuming a uniform prior on redshifted component masses
and spin magnitudes and isotropic in spin orientations.
The prior distribution peaks at values consistent with the
Bekenstein-Hod bound, but extends up to H = 18 with
9% support above the bound. As expected for a loud
event such as GW150914, the posterior distribution differs
significantly from the prior. We discuss alternative prior
choices in the next section. Although the data from which
the temperature was estimated has some overlap with the
ringdown data, our conclusions are not affected. First of
all, the hypotheses employed in estimating the tempera-
ture and the damping time are independent. Moreover,
since the fraction of SNR contained in the late time ring-
down (starting 10 My past the strain peak) is modest, the
temperature estimate is largely independent of the last
portion of the data.

Note that in ordinary classical thermodynamical systems
(i.e. not strongly self-gravitating compact systems), H
would attain a value of the order ~ 107! [I8]. The large
values attained by the posterior distributions shown in
Fig. are an astonishing consequence of the peculiar
characteristics of BH vacuum solutions.

Joint GWTC analysis — Having verified the bound
on GW150914, we proceed to investigate whether other
BBH detections from LIGO and Virgo also respect the
bound. Not all of the events present in the GWTC-2
catalog [31] [32] show a detectable ringdown, since low-
mass systems merge at frequencies O(kHz), where the
sensitivity of the detector quickly degrades. Hence, we
repeat the ringdown analysis on the BBH events included
in Ref. [53], applying two additional requirements: i) the
posteriors of the H parameters differ from the assumed
priors and ii) the logarithm of the Bayes factor between
the hypothesis of a damped sinusoidal signal being present
in the data versus the hypothesis that the data contain
only noise, is positive (log BZ > 0). These additional
requirements are needed, since the selection criterion
applied in Ref. [53] was based on a different waveform
template than the one adopted in our current analysiﬂ

1 Our analysis focuses on the observed BH population properties,
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FIG. 1. Posterior probability distribution (red area) of the
Bekenstein-Hod bound (gold vertical line). For comparison,
the H distribution when enforcing GR predictions (black area)
and the prior distribution (green area) are also displayed. The
bound is satisfied at 91% probability.

We compute posterior distributions on the bound with the
same procedure outlined for GW150914, using posterior
samples presented in Refs. [32] 53] and available at [68]
[77]. In Table we report the posterior probability P(H; <
1|D;) for each of the events using the method described
in the previous section. The extension of the analysis
to this pool of events, which now includes low signal-
to-noise ratio signals, implies that our estimate will be
more sensitive to the specific choice of prior employed
in the analysis. To address this issue, in Table [I] we
also list the probabilities extracted from single events
likelihoods on the Bekenstein-Hod bound, P(D; | H; < 1),
corresponding to the case where a uniform prior is set on
the H parameter. As expected, the two estimates show
a closer agreement on loud events, while for quieter ones
they differ. For the latter, the likelihoods are only mildly
informative and thus extend to large values of the H
parameters, hence yielding weak bounds. In summary, no
significant disagreement with the theoretical prediction is
found.

We extract a combined statement from all the avail-
able events by computing the probability that the whole
population of analysed massive remnant BHs respects

hence the treatment of selection effects is not relevant to our
study.



TABLE I. Probabilities that the Bekenstein-Hod bound holds
in BBHs observed by LIGO and Virgo, extracted from the
posterior (P p) and likelihood (Ppy) distributions. The
combined estimates are computed, respectively, from the me-
dian posterior distribution of a hierarchical analysis (see main
text) and the evidence-weighted likelihood average of the con-
sidered events. A high agreement with the prediction of GR,
BH thermodynamics and information theory is found.

Event Pyp Ppin
GW150914 0.91 0.75
GW170104 0.70 0.28
CGW190513.205428 0.74 0.24
CGW190519_153544 0.72 0.43
GW190521 0.99 0.98
CGW190521.074359 0.97 0.86
CGW190602-175927 0.74 0.44
GW190910-112807 0.99 0.94
Combined 0.94709% 0.93

the bound. We do so by means of a hierarchical mod-
eling 78], [79] procedure. Each remnant BH possesses a
value of ‘H dependent on the GW signal source parame-
ters, yielding a different posterior distribution, denoted by
{p(Hi|D;i) }iepn, vy Wwhere N is the total number of observed
events. However, if GR, information theory, and BH ther-
modynamics are valid, all the p(#;|D;) need to have neg-
ligible support besides unity. To verify this prediction, we
assume that the H; are realisations of an underlying par-
ent distribution p(# | DY), where DV := {Dy,...,Dy}.
This observed distribution p(# | D?), will depend on the
BH dynamics, and on the properties of the observed BHs
masses and spins. The actual functional form of the dis-
tribution is not too relevant, as long as it is: i) sensitive
to violations of the bound; ii) flexible enough to incor-
porate the structure of the observed distributions. To
meet both these conditions, we assume the uni-variate
version of a Dirichlet distribution, the Beta distribution
p(H | DY) = B(H;a,b), where a,b > 0 are the concentra-
tion parameters. Since the support of the beta distribu-
tion is restricted to the unit interval, we renormalised the
‘H-support to the largest value found in the entire set of
events considered, H := H/H™**. The Beta distribution
is a convenient way of expressing the underlying parent
distribution p(H |D?) in a parametric form. By varying
the concentration parameters of the distribution, its shape
can model both situations where there is uniform support
over the whole H range and situations where the sup-
port of H is peaked below or above the Bekenstein-Hod
bound. We verified the robustness of our conclusions by
repeating the analysis presented below using alternative
parametrizations, such as a Gamma distribution. None of
our conclusions are affected. The hierarchical approach
also provides a robust and convenient framework to elim-
inate the prior dependence on our final measurement.

This is especially important since, as already discussed,
the prior on the H parameter obtained by imposing the
standard priors assumed in LVC analyses, peaks below
one, thus it favors a-priori GR and can mask possible
deviations in the BH information emission rate for quiet
events. The inference task then reduces to the problem of
inferring the values of the concentration parameters a, b
from the available data.

To this end, we use Bayes theorem and the quantitative
rules of bayesian inference [42]. We start from the global
posterior distribution of all the nuisance (#;) and hyper-
parameters (a, b):

- C®

p(HY,a,bDV) =
where HY := {#H;},cn.~ and Z is the evidence normali-
sation factor. The prior splits in two terms:

p(/HN,a,b) :p(’HN\a,b)p(a,b), (4)
where p(a,b) is chosen to be a uniform distribution. The
first factor entering Eq. encodes our hierarchical model

assumption that each H; originates from a Beta distribu-
tion:

p(H" |a, b)

Hp?-[|ab

where B(a,b) is the beta function and we made use of
the independence of different GW events.

The likelihood can be further simplified using the fact
that the events are independent and that the hyper-
parameters do not enter directly in the single-event likeli-
hoods:

Hﬂ(ﬁi;a,b» (5)

p(DN|HY, a,b) = p(DV M) Hpo (6)

Each single-event likelihood p(D;|H;) is constructed from
a Gaussian Kernel Density Estimation [80] applied on
the posterior and prior distributions of each H;. We use
the CPNest Nested Sampling algorithm [81] to extract
the posterior probability distribution of Eq. 3] An ad-
ditional complication arises from the fact that the a,b
parameters are strongly correlated, giving origin to up-
per prior railing in the b parameter, independently of
the chosen upper prior bound b,,,,. We thus choose
to marginalise over the values of apaz,bmasr by repeat-
ing the analysis for different choices of the parameters
(amaz = bmaz = {1, 5,10,50,100,500,1000}) and select-
ing the result yielding the largest evidence. Our results
are not affected by the observation of this railing. As the
upper prior bounds increase, the posterior tends to shrink
towards values more and more in agreement with the
Bekenstein-Hod bound. Consequently, by selecting the
highest evidence case (amaz = bmaz = 100), we employ a
conservative choice. In Fig. we display, in blue, the
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FIG. 2. Median and 90% credible levels on the Bekenstein-Hod
parameter H parent distribution, obtained through a hierar-
chical model (blue area). Single-events likelihood (grey curves)
are also displayed, together with their evidence-weighted aver-

age (red curve). The probability that the bound (gold dashed

line) is obeyed by the whole population are p = 0.94f8j(1)‘2

when assuming the posterior distribution and p = 0.93 when
assuming the average likelihood.

median and 90% credible intervals of the posterior proba-
bility distributions p(H|D™, a,b). Single events likelihood
are shown in grey, for comparison. We finally compute
the probability that the Bekenstein-Hod bound (gold ver-
tical line) is obeyed on a population level, by computing
the p-value (p = p(H < 1|D¥,a,b)) for each of a,b sam-
ple obtained from Eq. . The result yields a p-value
distribution strongly peaked towards unity with median
and 90% credible levels given by p = 0.941'8:(1)2, where
p = 1 would indicate perfect agreement with the predic-
tion, while p = 0 perfect disagreement. The Bekenstein-
Hod bound is respected with very high confidence by
the observed BBH population. As an additional check,
we compared our result with the corresponding value
coming from a naive point-estimate of the average H
likelihood, the latter being insensitive to specific hierar-
chical modeling choices. A weighted average over single
events likelihoods, with weights given by the respective
evidences, yields the red curve displayed in Fig. , cor-
responding to p = 0.93. The excellent agreement between
this un-modelled estimate and the median of the hierar-
chical population posterior confirms the robustness of the
adopted population model.

Conclusions— BHs are expected to be the fastest-
dissipating objects in the Universe, in the sense that

they possess the shortest possible relaxation time for
a given temperature [I8]. In this Letter, we obtained
an observational verification of the Bekenstein-Hod
information emission bound using a Bayesian time-
domain analysis applied to the binary black holes of the
LIGO-Virgo GWTC-2 catalog. The result is consistent
with the predictions of GR, BH thermodynamics and
information theory. Our analysis provides the first
experimental verification of a long standing prediction on
the dynamical information-emission process of a BH.

Software Open-software python packages, accessible
through PyPi, used in this work comprises: corner,
gwsurrogate, hbpy, matplotlib, numba, numpy,
scipy, seaborn, surfinBH [707 1) 82—88].
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