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Employing unbiased large-scale time-dependent density-matrix renormalization-group simula-
tions, we demonstrate the generation of a charge-current vortex via spin injection in the Rashba
system. The spin current is polarized perpendicular to the system plane and injected from an
attached antiferromagnetic spin chain. We discuss the conversion between spin and orbital angu-
lar momentum in the current vortex that occurs because of the conservation of the total angular
momentum and the spin-orbit interaction. This is in contrast to the spin Hall e↵ect, in which
the angular-momentum conservation is violated. Finally, we predict the electromagnetic field that
accompanies the vortex with regard to possible future experiments.

The interconversion of charge and spin degrees of free-
dom is a key issue in spintronics [1]. Noteworthy phenom-
ena in this regard are the spin Hall e↵ect, which describes
the generation of a transverse spin current by a charge
current, and its inverse [2–5]. These e↵ects are due to a
spin-asymmetry of conduction electrons by the spin-orbit
coupling. A typical model for studying the spin-charge
interconversion is the two-dimensional electron gas with
Rashba spin-orbit coupling [6, 7]. Various e↵ects due
to the Rashba spin-orbit coupling have been extensively
investigated, including the spin-orbit torque [8] and the
Edelstein e↵ect [9, 10]. While the spin Hall conductiv-
ity actually vanishes in the Rashba model with quadratic
dispersion [11–14], spin Hall physics may still be observed
in mesoscopic Rashba systems. It was shown, for exam-
ple, that charge current in a nanowire can induce spin
accumulation at the lateral edges [15].

In this Letter, we investigate a junction, in which a
spin current is transmitted into a Rashba system from an
antiferromagnetic spin-1/2 Heisenberg chain. The spin
current in the spin chain is carried by elementary excita-
tions called spinons [16]. Our goal is to demonstrate the
conversion of this spinon spin current into a conduction-
electron spin current in the Rashba system, and in par-
ticular to investigate the charge-current signal caused by
the interplay of the spin injection and spin-orbit cou-
pling. Although the junction is an interacting quantum
system, it can nevertheless be e�ciently simulated by us-
ing matrix-product-state methods [17–19] combined with
a Lanczos transformation of the Rashba system [20–23],
allowing us to obtain unbiased numerical results for the
current dynamics. Most notably, we show that when a
spin current with spin polarization perpendicular to the
system is injected at a point-like contact into the Rashba
system, a charge-current vortex emerges. This is similar
to the spin-charge conversion in the inverse spin Hall ef-
fect. What is di↵erent in our model, however, is that the

FIG. 1. Sketch of the setup described by Eqs. (1)-(4). A
spin current (purple arrow) polarized perpendicular to the
Rashba plane is induced in the spin chain by switching on a
spin voltage in the lead. This spin current is injected into the
Rashba system, where it causes the formation of a charge-
current vortex (red and blue arrows). The orange segments
denote the coupling between the spin chain and the lead and
Rashba systems. In an experiment, the magnetic field induced
by the charge current may be detected using scanning probe
microscopy.

direction of the current is not uniform and the system
instead has a rotational symmetry around the injection
point. The junction thus has a conserved total angular
momentum, and it turns out that the injected spin an-
gular momentum is mostly converted to orbital angular
momentum of the current vortex. We focus on a model
with an antiferromagnetic spin chain as a spin injector.
As discussed in the Supplemental Material [24], however,
the generation of the charge-current vortex could also be
observed in other settings. At the end, we will discuss
the relevance of our results for possible experiments.
Let us first introduce the setup in more detail. We

consider a Rashba model in the xy-plane on an infinite
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where µ is the chemical potential, tR is the hopping, �
is the spin-orbit-coupling strength, �x and �

y are Pauli
matrices, and ĉr = (ĉr", ĉr#)T are fermion annihilation
operators. One site r0 shall be coupled to another sys-
tem that is used to inject a spin current polarized in the
z-direction (see Fig. 1). Specifically, we employ an anti-
ferromagnetic spin-1/2 Heisenberg chain of length NS :
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To generate a spin-current flow, the other end of the
spin chain is connected to a one-dimensional semi-infinite
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The second term in Eq. (2) describes a spin voltage that is
switched on at time t = 0. Finally, the coupling between
the subsystems is given by
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with J
0
, J

00
> 0, i.e., an antiferromagnetic Heisenberg

interaction. The complete Hamiltonian then becomes
Ĥ(t) = ĤR + ĤS + ĤL(t) + ĤC . It is assumed that the
composite system is initially in the ground state of Ĥ(t <
0) until the spin voltage is switched on. Throughout this
paper, we use tR as the unit of energy and set NS = 12,
J = tL = 2, µ = �3.5, and V = 0.5. Since Ĥ(t) con-
serves the particle number in each tight-binding system,
no charge current is injected in addition to the spin cur-
rent. We are interested in the charge-current that instead
develops as a consequence of the injected spin current
and the spin-orbit coupling. Here, the charge-current-
density operators for neighboring sites r and r+ex,y are
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FIG. 2. Tensor-network-state ansatz for the numerical simu-
lations. The vertical lines denote the physical indices, i.e., the
basis states of the local Hilbert spaces. Here, they correspond
to the occupation numbers nj,� of the fermions in the Lanc-
zos basis or, in the spin chain, the z components Sz

j of the
spins. The remaining lines indicate the bond indices of the
tensor network. On the left side, the one-dimensional lead is
similarly split into two branches (not shown).

In order to simulate the above model numerically,
we use a Lanczos transformation that maps the two-
dimensional Rashba system to a chain representa-
tion [20, 23]. The Hamiltonian then becomes purely one-
dimensional and matrix-product-state techniques can be
used to calculate the ground state and simulate the time-
evolution with high accuracy [17–19]. To be precise,
we utilize a tensor-network representation in which each
tight-binding chain is split into two branches correspond-
ing to di↵erent spin indices (pseudospin indices for the
Rashba case) [23, 25]. This significantly reduces the nu-
merical e↵ort compared with a regular matrix-product
state. Figure 2 displays the tensor network in the usual
graphical notation.
For the numerical calculations, the tight-binding chain

and the Lanczos representation of the Rashba system are
each truncated to 500 sites. The time evolution is car-
ried out using the time-evolving block decimation with
a second-order Suzuki-Trotter decomposition and a time
step 0.025 [18]. For all simulated times the truncation
error is kept below 10�7. In Ref. [24], the Lanczos trans-
formation and the accuracy of the numerical results are
discussed in further detail.
When the spin voltage is switched on in the first lead,

a spin current starts to flow at the interface with the spin
chain. The perturbation spreads through the chain, ap-
proximately with the spinon velocity J⇡/2, and finally
reaches the Rashba system. At low temperatures, the
e�ciency of the spin injection into the Rashba system
depends strongly on the coupling J

0 [26–28]. We have
chosen J

0
/J = 2.15 and J

00
/J = 1.70 in order to maxi-

mize the spin current in the steady state. For these pa-
rameters, the spin current into the Rashba system quickly
saturates to a value slightly below V/(4⇡), which is the
current corresponding to the expected linear spin con-
ductance of the junction with ideal contacts. In the fol-
lowing, we analyze the charge current induced by this
continuous spin-current injection. We assume that the
spin current is polarized in the z-direction. Results for
an x-polarized spin current are presented and briefly dis-
cussed in Ref. [24].
Figure 3 shows the numerically calculated charge-
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FIG. 3. Snapshot of the charge-current densities jc
r at di↵er-

ent times t. For easier visualization, each arrow corresponds
to the average value of the currents in a square of 3⇥ 3 sites.
The length and color of the arrows indicate the magnitude
and direction of the current, respectively. Black arrows show
that the current points in the radial direction, while blue (red)
arrows denote current in the clockwise (counterclockwise) az-
imuthal direction.

current profile for spin-orbit coupling parameters � = 0.1
and 0.2, and di↵erent simulated times t. Clearly, multi-
ple rings with circular charge-current develop and then
persist for long times. Neighboring rings have opposite
orientation, i.e., the current alternates between clockwise
and counterclockwise. This behavior can be understood
qualitatively as follows: A spin current in the Rashba
system generates a transverse charge current via the in-
verse spin Hall e↵ect [29]. Here, the spin current points in
the radial direction relative to the injection point, which
leads to the observed circular charge current. Because
of the Rashba spin precession, the spin current oscil-
lates as a function of the distance r from the injection
point, so that the charge current eventually changes di-
rection as r is increased. While the charge current at long

times (and fixed radius r) is almost entirely azimuthal,
the current in the transient regime clearly has a signif-
icant radial component. This current occurs because of
the di↵erent velocities for particle and hole excitations
at finite spin voltage V . Its magnitude depends approx-
imately quadratically on V [24], since it is a↵ected by
both the strength of the injected spin current and the
average velocity di↵erence. For realistic values of V , the
radial current should thus be very small. It should also be
noted that in a real system, the charge separation would
be counteracted by the generated electrostatic potential,
which is not accounted for in our model.
To make analytical predictions for the induced charge

current that can be compared with the numerical results,
it is more convenient to work with the continuous Rashba
Hamiltonian

ĤR = p̂2
/2m+ ↵(�x

p̂y � �
y
p̂x) . (6)

By setting m = 1/(2tR) and ↵ = �2�, ĤR can be used to
analyze the lattice version Eq. (1) in the long-wavelength
limit k ! 0. The continuum results are therefore appli-
cable if the spin-orbit-coupling strength � is small and
the Fermi energy "F is close to the bottom of the elec-
tron bands (working at zero temperature, µ becomes the
Fermi energy "F ). In this regime, the wavenumber of
the Rashba precession is kR = 2�, which agrees with the
widths of the observed current rings.
Figure 4 shows the radial dependence of the current

for the largest simulated time t = 45 in more detail.
Here, the charge current is separated into two parts, ĵct
and ĵc�, which are the terms proportional to tR and �,
respectively. Namely, we define
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The functional form of the two contributions can be
explained using a semi-classical analysis in terms of
wavepackets deflected by a spin-orbit force [30]. Let us
consider the trajectory of an electron wavepacket at the
Fermi energy "F that has average momentum p and is
initially centered at r = 0 with the spin pointing up. In
addition to propagating in the direction of p, it expe-
riences an e↵ective transverse force proportional to the
z-component of the spin and the magnitude p of the mo-
mentum. Since the spin oscillates with wavenumber kR

because of the spin-orbit coupling, so does the deflect-
ing force. This transverse movement corresponds to the
spin-orbit part jc� of the charge current. Furthermore,
it causes the momentum p to no longer point in the ra-
dial direction er = (x, y)T/r, so that the regular part
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FIG. 4. Radial dependence of the azimuthal component of the
charge current at time t = 45. The solid lines are according
to Eqs. (9) and (10).

jct of the current obtains a finite component in the az-
imuthal direction e' = (�y, x)T/r as well. By assuming
that the injected spin current is composed in equal parts
of wavepackets for spin-" electrons and spin-# holes that
are evenly distributed over all directions, one obtains the
following prediction for the charge current for long times
t and small �:

jct (r) = j
z 2A

kR

sin2(kRr/2)

r2
e' , (9)

jc�(r) = �j
z
A
sin(kRr)

r
e' , (10)

where A = 2�/(vF⇡) is a constant that depends on the
Fermi velocity vF = 2tR

p
4 + (�/tR)2 + "F /tR, and j

z

is the injected spin current. Inserting for j
z the time-

averaged value from the numerical simulations, we ob-
tain excellent agreement with the numerically calculated
charge current for r & 8 (see Fig. 4), without any ad-
justable parameters. Deviations for small r are likely
due to the lattice discretization.

Since the continuous Rashba Hamiltonian ĤR is sym-
metric under a simultaneous rotation of space and
spin, the z-component of the total angular momentum
Ĵ
z = M̂ + Ŝ

z, where M̂ = x̂p̂y � ŷp̂x is the or-
bital angular momentum, is conserved. While the lat-
tice Hamiltonian ĤR does not have this symmetry, we
may expect the conservation of the total angular mo-
mentum to hold approximately, when the Fermi en-
ergy is small and the lattice model behaves similar
to the continuum model. To be concrete, we define
the orbital angular momentum on the lattice as M̂ =
x̂ sin(p̂y)� ŷ sin(p̂x). Using the first-quantized version of

Eq. (1), ĤR = �2tR[cos(p̂x)+cos(p̂y)]I�2�[�x sin(p̂y)�
�
y sin(p̂x)], one then obtains from the Heisenberg equa-

tion: dŜz
/dt = �2�[sin(p̂y)�y+sin(p̂x)�x] and dM̂/dt =

2�[cos(p̂x) sin(p̂y)�y+cos(p̂y) sin(p̂x)�x]. Obviously, Ŝz+

M̂ is approximately conserved if we confine our analysis
to states with small momenta p. To calculateM in the in-
teracting model numerically, we use the second-quantized
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FIG. 5. Time evolution of the z-component of the spin- and
orbital angular momentum in the Rashba system. The total
spins in the lead and the spin chain are denoted by Sz

L and Sz
S ,

respectively. Therefore, the black line indicates the injected
spin angular momentum. It would match the blue line if the
total angular momentum was conserved.
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Comparing with Eq. (7), one can see that M̂ is de-
termined by the regular part ĵct of the charge-current-
density operator ĵc.
When the spin current is injected, it increases the to-

tal angular momentum J
z
R = S

z
R + M in the Rashba

system. One might then ask how J
z
R is composed of the

spin S
z
R and the orbital contribution M . Figure 5 dis-

plays the numerical results for the time evolution of the
angular-momentum expectation values. As noted above,
the total angular momentum is not exactly conserved
but the deviation is relatively small for "F = �3.5. Ini-
tially, M = S

z
R = 0 because the spin current has not

entered the Rashba system yet. The delay before the an-
gular momenta visibly change is in agreement with the
expectation NS/vS ⇡ 3.8 based on the spinon velocity
vS = J⇡/2 in the infinite chain. For short times after the
spin current has reached the Rashba system, Sz

R makes
up most of the angular momentum while M remains ap-
proximately zero. On longer time-scales, however, S

z
R

can be seen to oscillate around zero, which means that
eventually most of the injected spin angular momentum
is converted to orbital angular momentum M . With the
same assumptions used to derive Eqs. (9) and (10), one
obtains that both the amplitude and the period of the os-
cillations are proportional to the wavenumber kR of the
Rashba precession. The numerical results roughly agree
with these predictions, except that the oscillations in S

z
R

and M also appear to decrease with time.
We estimate the magnetic field generated by the cur-

rent vortex following the Biot-Savart law of electromag-
netism. By assuming �, a lattice constant of 1 Å, a hop-
ping parameter tR = 1 eV and a linear dependence of the
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induced charge current on the spin voltage V , we obtain
a field strength B ⇡ V · 10�5 T/eV at the center. For a
realistic value of the spin voltage in the order of 10�4 eV,
this is about 10�9 T and should therefore be within reach
of experimental detection by scanning probe microscopy
methods. To reach the necessary sensitivity, one could,
e.g., use a nitrogen vacancy defect center in diamond as
detector [31]. We moreover expect that the magnetic field
would be larger in a perhaps more realistic setup with a
bundle of spin chains instead of a single chain. Lastly,
one could also consider injecting an AC spin current into
the two-dimensional electron gas, in which case the cur-
rent vortex would emit an electromagnetic field of similar
strength.

In conclusion, a charge current vortex can be gener-
ated in a Rashba system by locally injecting a spin cur-
rent. The formation of the current vortex is accompanied
by the conversion of the injected spin angular momen-
tum to orbital angular momentum. We demonstrated
these e↵ects for a generic model in which the spin cur-
rent is transferred from an antiferromagnetic Heisenberg
spin chain to a square-lattice Rashba system. In light
of the recent realization of spin transport in the spin-
chain material Sr2CuO3 [32], this model could be rele-
vant from an experimental point of view. Accurate time-
dependent density-matrix renormalization-group results
for the charge current were found to agree well with pre-
dictions from semi-classical considerations. The charge-
current vortex induces an electromagnetic field, which
may be observed experimentally.
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