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We describe an experimental technique to measure the chemical potential, µ, in atomically thin
layered materials with high sensitivity and in the static limit. We apply the technique to a high
quality graphene monolayer to map out the evolution of µ with carrier density throughout the N=0
and N=1 Landau levels at high magnetic field. By integrating µ over filling factor, ν, we obtain the
ground state energy per particle, which can be directly compared with numerical calculations. In the
N=0 Landau level, our data show exceptional agreement with numerical calculations over the whole
Landau level without adjustable parameters, as long as the screening of the Coulomb interaction by
the filled Landau levels is accounted for. In the N=1 Landau level, comparison between experimental
and numerical data suggests the importance of valley anisotropic interactions and reveals a possible
presence of valley-textured electron solids near odd filling.

Partially filled Landau levels (LLs) are a paradigmatic
example of flat band systems where dominant Coulomb
interactions lead to a rich phase diagram of correlation
driven electron states. Theoretically, the partially filled
LL provides a compromise between phenomenological
richness and computational tractability. However, quan-
titatively benchmarking numerical methods with trans-
port measurements is typically limited to a discrete set of
LL filling factors, ν. Thermodynamic quantities such as
the chemical potential µ are more closely related to theo-
retically calculable quantities. Owing to recent progress
in improving sample quality[1] and the fact that the sin-
gle particle band structure is known to a high degree of
accuracy, graphene is an ideal venue to pursue quantita-
tive understanding of partially filled LLs. In this Letter
we report precise measurements of µ in a high quality
monolayer graphene layer at both zero and high magnetic
fields. Typical measurements of thermodynamic quanti-
ties in graphene probe the compressibility ∂n/∂µ at finite
frequency[2–5], hindering accurate measurements in the
quantum Hall regime where equilibration times can be-
come long. Our measurements probe µ directly[6] in the
static, ω → 0 limit. This allows us to determine µ across
a continuous range of ν, and subsequently the total en-
ergy per flux quantum, E, where µ = ∂E/∂ν.

Our heterostructure consists of two graphene mono-
layers embedded between top and bottom graphite gates
(see Figs. 1a-b and S1 ), with each conducting layer
separated by a hexagonal boron nitride (hBN) dielectric
of approximately 40nm thickness. The dual graphite-
gated structure ensures low charge inhomogeneity on
both graphene monolayers while allowing independent
control of their respective carrier densities through the
static gate voltages applied to the top gate (vt), bottom
gate (vb), and top monolayer (vd). Internal contacts[12–

16] are attached to the top monolayer—designated the
‘detector’—and are used to measure its bulk conductiv-
ity σd. To measure µ of the bottom (’sample’) graphene,
we keep it grounded, and control µ by sweeping vb. For
each fixed vb, we adjust the vt to null the effect of changes
in µ on the on the detector layer density. Under these
conditions, the change in detector layer density δnd = 0,
which implies δµ = −ctδvt/c0[17]. δµ is then determined
by recording δvt, and calibrating the geometric capaci-
tance lever arm ct/c0 (see Fig. S2).

Functionally, δnd = 0 is enforced by choosing a “tar-
get” density nd such that σd is at a conductance mini-
mum corresponding to the Dirac point at B=0T or a weak
FQH state at high B. Figure 1b shows the schematic of
our measurement circuit which uses a digital feedback
loop to maintain σd at its minimum as other parameters
are swept. While the current measurement is done at
finite frequency to allow low noise readout, it does not
require charging of the sample layer at these frequen-
cies. This allows us to access regimes where the sample
layer conductivity is very small and equilibration times
are very large. In practice, measurements are typically
done with equilibration times of τ ≈ 1 sec.

Fig. 1d shows µ measured at B=0T and 200mT, plot-
ted as a function of the sample carrier density n =
c0(vd − µ) + cb(vb − µ), where cb is the capacitance be-
tween the sample and the bottom gate. µ(n) shows
the
√
n dependence expected for the linearly dispersing

bands of monolayer graphene[2], as well as steps asso-
ciated with LL formation when a small magnetic field
is applied. To quantitatively model the data, we take
µ2 = (∆AB/2)2 + (~vF

√
π|n|)2, where ∆AB is the sub-

lattice splitting that most arises due to alignment of
the graphene with one of the encapsulating hBN lay-
ers [7, 8] and vF is the Fermi velocity. We determine
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FIG. 1. (a) Optical image of the device, scale bar is 10µm. (b) Measurement schematic. Static gate voltages are applied to
the top gate (vt), bottom gate (vb), and detector monolayer (vd). σd is measured by applying an AC voltage ṽd at frequency
f1 = 13.77Hz to one of the internal contacts and measuring the current at another with a DL1211 amplifier. An additional AC
voltage (ṽt) is applied to the top gate at f2 = 110Hz. Demodulating the current at f2 − f1 with an SR860 lock-in amplifier
produces a signal proportional to dσd/dvt, which vanishes at a conductivity minimum independent of contact resistance. We
use a feedback loop to continuously adjust a static voltage δvt in order to maintain dσd/dvt = 0. Under these conditions,
δµ = −ctδvt/c0. (c) σd (blue) and δσd/δvt (red) as a function of δvt. (d) µ(n) at B=0T (red) and 0.2T (blue), measured
at T=15mK. (e) Density of states dn/dµ calculated by numerical differentiation of data in panel (d). The ZLL is split by a

sublattice gap[7, 8] of ∆AB = 6.9meV. (f) n-dependent vF measured by fitting B=0T data to µ2 = (∆AB/2)2 + (~vF
√
π|n|)2

with ∆AB fixed and vF a free function of n. The red curve is a fit to theoretical models[9–11] of Fermi velocity renormalization
by Coulomb interactions.

∆AB = 6.9meV from the splitting of the zero energy LL
(ZLL) centered at µ = 0, evident in Fig. 1e where we plot
dn(µ)/dµ as determined by numerical differentiation of
the µ(n) data (see also Fig. S3 ). Figure 1f shows vF (n),
determined by fixing ∆AB but allowing vF to be a free
n-dependent parameter. vF is enhanced at low densities,
consistent with past experiments[18, 19] and well fit by
theoretical models of Fermi velocity renormalization[9–
11], as shown by the red curve in Fig. 1f and described
in the SI.

The LLs of monolayer graphene are approximately
four-fold degenerate due to the spin and valley degrees of
freedom, but this degeneracy is spontaneously broken at
high magnetic fields via quantum Hall ferromagnetism.
Fig. 2a presents µ(ν) at B=14T across the ZLL that
spans −2 < ν < +2, where ν = 2π`2Bn is the LL filling
factor. The high quality of the detector layer is crucial for
achieving high experimental µ resolution, as FQH con-
ductivity minima in the detector layer provide sensitive
transducers for the sample layer chemical potential (see
Fig. S4 ). Over large regions of density, µ(ν) decreases
as a function of ν (negative compressibility), despite the
naive expectation that µ should increase monotonically
with ν due to Coulomb repulsion. This is because the
chemical potential measured here is actually relative to
that of a classical capacitor, which subtracts off the q = 0

part of the Coulomb interaction 1
2V (q = 0)n2. It is well

understood [17, 21] that negative compressibility then
arises because correlations lower the energy of quantum
Hall states relative to that of a uniform charge distribu-
tion. µ jumps at each integer ν indicating incompressible
integer quantum Hall states arising from the broken sym-
metry of the spin and valley components of the isospin.
Additional jumps are observed at a series of fractional ν
associated with incompressible fractional quantum Hall
(FQH) states at ν∗ = p/(2p ± 1) (p = 1, 2, 3, ...) and
ν∗ = p/(4p ± 1) (with p = 1 and 2)[3–5, 22]. Here
ν∗ = |ν − ν0| indicates the filling relative to an adja-
cent integer filling ν0 ∈ Z. At high B, regions (shaded in
blue) around integer ν are good insulators, and so are no
longer accessible at low temperatures due to the hours-
or days-long equilibration time of the sample layer (see
Fig. S5 ).

The four copies of the ZLL are nearly identical apart
from an offset in chemical potential, suggesting that the
LL is close to fully spin and valley polarized at this mag-
netic field. This is expected based on the measured
value of ∆AB , which splits the valley degree of free-
dom in the ZLL; in combination with the Zeeman en-
ergy, FQH physics is expected to be predominantly sin-
gle component[15] in this regime of magnetic fields. We
begin our quantitative analysis at low ν∗ where electron
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FIG. 2. (a) µ(ν) within the ZLL measured at B=14T and
nominal T=15mK. Blue regions indicate domains of ν where
the charging time of the sample exceeds the measurement
time of ∼1 second. (see Fig. S5 ). (b) µ at B=18T and
nominal T=40mK for low ν∗, measured relative to ν = −1
(orange), ν = 0 (blue), and ν = 1 (red). The cyan and purple
curves are calculated µ for a Wigner crystal with screened
and unscreened Coulomb interactions, respectively, taking
εhBN = 4.0 and αG = 1.85; shaded ranges reflect uncertainty
in those parameters as described in main text. The data are
offset so that µ(ν∗) = 0. (c) Numerically calculated[20] total
ground state energy of the N=0 LL after accounting for the
screened Coulomb interactions. (d) Comparison of experi-
mentally determined (solid lines) and numerically calculated

(dark blue crosses) Ẽ. Both experimental and numerical data

have a linear-in-ν∗ background subtracted so that Ẽ vanishes
at integer ν∗. Data were taken at B=18T and T=40mK.

Wigner crystal phases[23, 24] are the expected ground
state. In transport measurements, the Wigner crystal
manifests as a low-temperature insulator that undergoes
a metal-insulator transition at finite temperature due
to pinning of the crystal by weak disorder, as observed
in both GaAs/AlGaAs quantum wells[25] and more re-
cently in graphene[26]. The largely classical nature of the
correlations in this regime make thermodynamic mod-
elling tractable, and quantitative agreement obtains be-
tween theory[27] and compressibility measurements in
GaAs/AlGaAs quantum wells[17, 22].

Fig. 2b shows µ plotted as a function of ν∗ near differ-
ent integer fillings within the ZLL. For comparison, we
also show theoretical calculations of µ in the Wigner crys-
tal phase developed for the case of unscreened Coulomb
interactions[24], where µ(ν∗) = −1.173|ν∗|1/2EC . Here

EC = e2

εhBN`B
is the Coulomb energy. The model has only

one parameter, the dielectric constant εhBN =
√
ε‖ε⊥,

which is the geometric average of the in and out-of plane
dielectric constants of the hBN substrate. ε⊥ = 3.0 can
be determined in situ, but ε‖ is not precisely known,

though it is thought to be ε‖ ≈ 6.6[28]. Even ac-
counting for uncertainty in this parameter, the model
does not agree with experiment. Quantitative agree-
ment is achieved, however, by considering the screen-
ing of the Coulomb interactions by the graphite gates,
which are accounted for using standard electrostatic cal-
culations, and by the filled Dirac sea, which we account
for within the random phase approximation (RPA)[29].
RPA takes as an additional input parameter the graphene
fine structure constant αG. Still treating the electrons as
a classical Wigner crystal, we numerically evaluate the
Madelung-type energy for the screened interaction Vscr(r)
to obtain µ(ν∗)[30]. To reflect uncertainty in the input
parameters, we show a range spanning εhBN ∈ (4.0, 4.5)
and αG ∈ (1.75, 2.2), in addition to reference curves for
εhBN = 4.0 and αG = 1.85.

The screened Coulomb interaction provides an excep-
tionally good match to the experimental data, suggesting
that no additional effects are present and that accounting
for the screening is sufficient to achieve quantitative un-
derstanding of this regime. We note that based on spin-
wave transmission measurements[26], spin Skyrmions ap-
pear to play a role in the Wigner solid phases near
ν = ±1. We do observe a small but systematic dis-
crepancy between µ near even and odd integer ν in the
Wigner crystal regime. This suggests that the large Zee-
man energy, EZ ≈ .03EC , restricts the Skyrmion size to
the point where they do not generate significant correc-
tions to µ at low ν∗.

Closer to the center of the LL, correlations become
quantum in nature and even numerical calculation of
µ is not tractable for arbitrary ν. However, numerical
methods can accurately calculate the total energy per
flux quantum E(ν) at many rational values of ν, as has
long been the focus of exact diagonalization and density
matrix renormalization group (DMRG) studies. Fig. 2c
shows the ground state energy calculated using infinite
DMRG[20] (iDMRG) on a circumference L = 18`B cylin-
der for a number of rational ν, assuming wave functions
are restricted to a single spin and valley component and
making use of the screened interaction Vscr.

The calculated E is dominated by a linear background,
µ0ν

∗, that is proportional to the exchange-correlation en-
ergy of the integer quantum Hall effect; the correlations
underlying the FQH effect are reflected in the deviations
of the calculated E from this background. In Fig. 2d,
we subtract off the linear contribution by instead plot-
ting Ẽ = E − ν∗E(ν∗ = 1) (Fig. 2d), which ensures
Ẽ(0) = Ẽ(1) = 0. This can be compared with exper-

iment by integrating µ(n), Ẽ(ν∗) =
∫ ν∗

0
(µ(ν) − µ0)dν,

where µ0 is chosen to ensure Ẽ(0) = Ẽ(1) = 0. To aid
in fixing µ0 accurately, the experimental data is extrap-
olated to integer ν by using the Wigner crystal model.
Numerical and experimental data agree to within exper-
imental uncertainty in αG and εhBN without additional
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FIG. 3. (a) µ in the N=1 LL at T=15mK and B=13T. (b) µ
measured near ν0 = −2, −4, and −6. Solid lines are µ calcu-
lated from the Wigner crystal model with parameters identi-
cal to those used in Fig. 2b. (c) µ near ν0 = −3 and −5. The
solid lines showing the Wigner crystal model do not match
the data, suggesting the importance of valley Merons[31] near
these fillings. (d) Comparison of experimentally determined

Ẽ with numerical simulations for −3 < ν < −2. 1-component
numerical calculations underestimate the experimental result
by a significant margin. Including both valley components
as well as the contribution of lattice scale anisotropies as in
Eq. 1 with gz = gxy = 0.1(a/`B)EC can restore agreement to
within 100µeV ≈ 2.5× 10−3EC .

adjustable parameters. Similarly, the measured thermo-
dynamic gap at charge neutrality, 53meV, agrees with
theoretically calculated jump in µ to within 4% [30].
These constitute remarkably good quantitative agree-
ment for a many-body system.

Fig. 3a shows µ measured across the first excited
LL, corresponding to orbital quantum number N=1 and
spanning ν ∈ (−6,−2). In contrast to the N=0 level,
both the size of the chemical potential jumps associated
with FQH gaps[15] and the magnitude of the negative
compressibility systematically decrease with increasing
|ν|. This trend arises naturally due to the nature of
the screened Coulomb interaction Vscr [29]: in the ZLL,
particle-hole symmetry makes the screening ν indepen-
dent, but within the N=1 LL screening smoothly inter-
polates between the N=0 and N=2 values as the four-
component LL fills. Indeed, applying this interpolation
to the Wigner crystal regime near even filling factors pro-
duces an excellent quantitative match between the data
and theory (Fig. 3b).

The N=1 LL and ZLL are further distinguished by the
effect of the sublattice symmetry breaking ∆AB , which
splits the valleys in the ZLL but has negligible effect on
the energies of the N=1 LL. This manifests most obvi-
ously in our data in the low-ν∗ regimes around near odd

integer filling, shown in Fig. 3c. In contrast to the com-
parable regimes of ν∗ near even integers, and throughout
the ZLL, the data are not matched by the predictions of
Vscr for a single electron Wigner crystal. To understand
this data, we note that tilted field magnetotransport
experiments[32] find evidence for a spin polarized state
at ν = ±4 in which excitations are either single spin flips
or small Skyrmions, similar to the situation at ν = ±1
in the ZLL. At ν = ±3,±5, in contrast, activated gaps
show minimal tilted field dependence, consistent with the
lowest energy charged excitations being valley textures.
Theoretically, the ground state of a spin-polarized but
valley-unpolarized LL applicable to ν = ±3,±5 is then
expected to be a solid of such valley textures[31], with re-
sulting corrections to E and consequently to µ. Notably,
the corrections to the energy will be largest when the
valley textures are most extended. The observed anoma-
lous µ(ν) supports the idea that the low single-particle
valley anisotropy in the N=1 LL stabilizes a solid of ex-
tended valley textures. This could be tested in the future
by extending numerical calculations[31] of such solids to
include the screened Coulomb interaction.

The multicomponent nature of the N=1 LL is further
evidenced in Fig. 3d, where iDMRG simulations of a sin-
gle component system fail to reproduce the experimen-
tally determined Ẽ when using the same model param-
eters which produce good agreement in the ZLL. Inter-
estingly, iDMRG finds a significantly lower total energy
compared to experiment. This suggests a missing contri-
bution to the energy, since adding degrees of freedom to
a variational parameter space can only lower the numer-
ically calculated energy, increasing the discrepancy. An
appealing candidate is the anisotropy of the Coulomb in-
teractions at small length scales, which breaks the valley-
SU(2) symmetry and can be expected to provide correc-
tions of Eani ∼ a

`B
EC ≈ 1.75 meV at B=13T, where

a = .246nm is the graphene lattice constant. Though
known to be important in the ZLL[1] near ν = 0, evidence
for short range anisotropy in the N=1 LL has been lim-
ited to the observation of a possible valley-ordered state
at ν = 4 for low magnetic fields[15], and they have not re-
ceived much attention in the theoretical literature[33, 34].

To model their effect, we analyze the interactions
which arise when projecting a short-range Hubbard-U
interaction into the N=1 LL. For simplicity we assume
full-spin polarization so that electrons are described by a
two-component field ψr indexed by valley τz. It is conve-
nient to express the result as the continuum interaction
which would produce the same Hamiltonian if the elec-
trons were in the N=0 LL. Taking into account the inter-
play of the form-factors of the N=1 LL and the sublattice
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structure, we find the general form[30]

Hani =
1

2

∫
d2r1/2

[
gzψ

†
r1τ

zψr1`
4
B∇4δ(r1 − r2)ψ†r2τ

zψr2

+gxyψ
†
r1τ

xψr1`
2
B∇2δ(r1 − r2)ψ†r2τ

xψr2 + (x→ y)
]

(1)

where gi ∼ a
`B
Ec. Note that the interactions are deriva-

tives of δ-functions; in contrast, the same exercise in the
ZLL would find contact interactions[34, 35]. Because
the FQH effect around density ν∗ = 1

m attaches zeros
(zi−zj)m to the inter-electron wave function, a ∇2mδ in-
teraction effectively “turns-off” for densities below 1

m+1 .
In the ZLL, this means the anisotropies only operate for
−1 < ν < 1, while in the N=1 we predict the anisotropies
act for all 2 + 1/3 < ν < 6 − 1/3. This is indeed the
region where our 1-component numerics deviate from ex-
periment.

Treating gz, gxy as adjustable phenomenological pa-
rameters, we perform 2-component iDMRG numerics
that include Hani. Fig. 3d shows the results for gxy =
gz = 0.1 a

`B
EC , which agree with experiment to within

100 µeV, comparable to the discrepancies observed in the
ZLL. In both LLs these discrepancies amount to 2×10−3

of the bare Coulomb energy EC .

In conclusion, we have developed an experimental
technique to measure µ to high precision in van der
Waals heterostructures and applied it to high-quality
graphene monolayers in the fractional quantum Hall
regime, achieving remarkable agreement between exper-
iment and numerical many-body simulations. Our tech-
nique paves the way for measuring thermodynamic quan-
tities, such as the entropy, which may shed light on more
subtle questions such as quasiparticle statistics[36].
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degen, T. Schäpers, B. Rupprecht, M. A. Wilde, and
D. Grundler, Physical Review B 80, 115336 (2009).

[43] L. H. Ho, L. J. Taskinen, A. P. Micolich, A. R. Hamilton,
P. Atkinson, and D. A. Ritchie, Physical Review B 82,
153305 (2010).

[44] J. Pollanen, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Physical Review B 94, 245440 (2016).

[45] I. F. Herbut, Phys. Rev. B 75 (2007).
[46] J. Jung and A. H. MacDonald, Phys. Rev. B 80 (2009).
[47] K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett.

103 (2009).
[48] D. V. Khveshchenko, Phys. Rev. Lett. 87 (2001).
[49] A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H.

Choi, K. Watanabe, T. Taniguchi, R. C. Ashoori, and
P. Jarillo-Herrero, Nature 505, 528 (2014).

http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1103/PhysRevB.50.1760
http://dx.doi.org/10.1103/PhysRevB.50.1760
http://dx.doi.org/10.1103/PhysRevB.30.473
http://dx.doi.org/10.1103/PhysRevB.30.473
http://dx.doi.org/10.1103/PhysRevB.30.1056
http://dx.doi.org/10.1103/PhysRevB.30.1056
http://dx.doi.org/10.1103/PhysRevLett.65.2189
http://dx.doi.org/ 10.1038/s41567-019-0729-8
http://dx.doi.org/ 10.1038/s41567-019-0729-8
http://dx.doi.org/10.1103/PhysRevB.15.1959
http://dx.doi.org/10.1103/PhysRevB.15.1959
http://dx.doi.org/10.1103/PhysRev.146.543
http://dx.doi.org/10.1103/PhysRev.146.543
http://link.aps.org/doi/10.1103/PhysRevB.75.245417
http://dx.doi.org/10.1103/PhysRevB.78.085309
http://dx.doi.org/10.1103/PhysRevB.78.085309
http://dx.doi.org/10.1038/nphys2307
http://link.aps.org/doi/10.1103/PhysRevB.74.075422
http://link.aps.org/doi/10.1103/PhysRevB.74.075422
http://dx.doi.org/10.1103/PhysRevLett.112.126804
http://dx.doi.org/10.1103/PhysRevLett.112.126804
http://dx.doi.org/10.1103/PhysRevLett.102.176807
http://dx.doi.org/10.1103/PhysRevLett.102.176807
http://dx.doi.org/ 10.1103/PhysRevB.61.R13361
http://dx.doi.org/ 10.1103/PhysRevB.68.201308
http://dx.doi.org/10.1103/PhysRevB.71.153307
http://dx.doi.org/10.1103/PhysRevB.71.153307
http://dx.doi.org/ 10.1103/PhysRevB.78.035322
http://dx.doi.org/10.1088/0953-8984/21/10/103202
http://dx.doi.org/10.1088/0953-8984/21/10/103202
http://dx.doi.org/ 10.1103/PhysRevB.80.115336
http://dx.doi.org/ 10.1103/PhysRevB.82.153305
http://dx.doi.org/ 10.1103/PhysRevB.82.153305
http://dx.doi.org/10.1103/PhysRevB.94.245440
http://link.aps.org/doi/10.1103/PhysRevB.75.165411
http://link.aps.org/doi/10.1103/PhysRevB.80.235417
http://link.aps.org/doi/10.1103/PhysRevLett.103.216801
http://link.aps.org/doi/10.1103/PhysRevLett.103.216801
http://link.aps.org/doi/10.1103/PhysRevLett.87.206401
http://dx.doi.org/10.1038/nature12800

	Experimental determination of the energy per particle in partially filled Landau levels
	Abstract
	Acknowledgments
	References


