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Ultracold atomic Fermi gases can be tuned to interact strongly, where they display spectroscopic
signatures above the superfluid transition reminiscent of the pseudogap in cuprates. However, the
extent of the analogy can be questioned, since many thermodynamic quantities in the low temper-
ature spin-imbalanced normal state can be described successfully using Fermi liquid theory. Here
we present spin susceptibility measurements across the interaction strength-temperature phase dia-
gram using a novel radiofrequency technique with ultracold °Li gases. For all significant interaction
strengths and at all temperatures we find the spin susceptibility is reduced compared with the equiv-
alent value for a non-interacting Fermi gas. At unitarity, we can use the local density approximation
to extract the integrated spin susceptibility for the uniform gas as a function of temperature, which
at high temperatures is generally less than theoretically predicted. At low temperatures our data
lie within the range of theoretical predictions, although we can also describe the entire curve using
a very simple one-parameter mean field model with monotonically increasing spin susceptibility.

In the study of strongly interacting quantum systems, the BEC-BCS crossover is a simple and experimentally
realizable model[1-3] with implications for a variety of physical systems, such as the high-T, cuprates[4] and neutron
matter[5, 6]. In this model, a two-component Fermi gas has an attractive contact interaction of varying strength. When
the interaction is weak, the Bardeen-Cooper-Schrieffer (BCS) state forms, while for strong interactions the fermions
form composite (bosonic) molecules, which then condense into a Bose-Einstein condensate (BEC). The crossover
occurs as these two states connect to one and other by tuning the interaction strength, parameterized by (kra)~!,
where kp is the Fermi wavevector and a is the s-wave scattering length. A fundamental question that emerges from
this model is the degree to which it embodies something universal about strongly interacting fermions, that is, which
strongly interacting fermionic systems can be approximately mapped to an effective theory falling somewhere along
the crossover. In particular, for the cuprates, the phenomenon of depressed density of states above the transition
temperature known as the pseudogap(7, 8] has been suggested to be due to a “preformed pairs” state analogous
to the BEC-BCS crossover[4]. Although one does not expect the complete, complex phenomenology of cuprates in
the BEC-BCS crossover, it remains an open question whether the cuprate pseudogap derives fundamentally from a
strongly interacting pairing mechanism. If so, one would expect an analog pseudogap in ultracold gases.

In light of these possible similarities, an important project is to compare the measured properties between ultracold
gases at the BEC-BCS crossover with their equivalent in materials. For spectroscopic properties, one can compare
angle-resolved photoemission spectroscopy (ARPES) measurements of the cuprates[7, 9-11] with their ultracold gas
analogs[12-14]. However, one expects spectroscopic measurements to be strongly influenced by the nature of the
particles’ dispersion curve, which is parabolic for ultracold gases but significantly not so in materials[15], which in
addition can have surface effects. In cold gases, spectroscopy from uniform samples[16] has also shown evidence of
non-Fermi-liquid behavior. Bulk thermodynamic measurements[17-19] are an alternative, as they can be deduced
from the equation of state (EoS) of a trapped atomic gas[20-25]. An appealing property for comparisons is the spin
susceptibility. This property is easily calculated for the non-interacting Fermi gas, which provides a natural scale, and
is directly measurable in materials, for example using NMR Knight shift[26, 27]. In NMR measurements of cuprates, a
clear decrease of the spin susceptibility is observed below the pseudogap onset temperature, 7*. Although a reduction
of spin susceptibility can be caused by many factors, in the cuprates it is associated with a reduction in the density
of states at the Fermi energy, which has been confirmed to exist based upon many other measurements|7].

In ultracold Fermi gases the situation is less clear: some theoretical calculations of the spin susceptibility have
predicted a weak temperature dependence (except possibly close to the transition temperature) and a generally
mean-field form[28-32], while others have found significant temperature dependence over a large temperature range,
closer to that seen in cuprates[33]. In experiments with Fermi gases, the spin susceptibility has been determined
from the EoS[34], from out-of-equilibrium dynamics[19, 35] and measured using speckle-field imaging[36]. These
studies found that the spin susceptibility near the onset of superfluidity is significantly reduced from the expected
value for a non-interacting gas, but did not establish the temperature dependence. Therefore such reductions are
consistent with any combination of a temperature-independent mean-field reduction due to interactions and a more
exotic situation involving reduction in the susceptibility setting in below a specific T*. The latter scenario would be
predicted by any model with a strong spin-singlet gap reducing the density of states with decreasing temperature.
Here we present the first comprehensive study of spin susceptibility over the entire interaction-temperature phase
diagram, showing that for interaction strengths near unitarity the spin-susceptibility is suppressed significantly even
at elevated temperatures. This indicates that any reduction in susceptibility, starting from our measured value at
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FIG. 1. Four closely related experiments with the same atomic cloud preparation, but different RF procedures. (a)-(d) The
first (second) subscript character on An denotes the direction of an adiabatic sweep onto (away from) resonance, where B (R)
represents blue (red) detuning. We hold the RF for 2 s on resonance between the sweeps. The RF procedure generates a spin
difference leading to positive signal in (b) and (c¢) and negative signal in (a) and (d). (e) 1D profile along the z axis of the trap
from summing the net differential signal (—Angp + Anrr + Angr — Angrp)/4 over the x direction with a 29 um wide region
centered on the atomic cloud. The data comes from a unitary gas at 210nK (T/T% = 0.27).

high temperature, would necessarily lead to very small residual susceptibility at the superfluid onset with respect to
that of a noninteracting Fermi gas at the same temperature.

We developed a novel method to measure the spin susceptibility by radiofrequency (RF) dressing. With a resonant
RF driving between two hyperfine states, in the interaction picture, a chemical potential difference Ay = pp—p_ = hQ
between the two dressed states is created, where Q/(27) is the Rabi frequency. This can be thought of as an effective
Zeeman field, and we can extract the susceptibility from the dressed states’ number difference after equilibrium is
reached. Labeling the hyperfine ground states of °Li with |1) from the bottom, we use a mixture of states |2) and
|3), which are adiabatically connected to the |my,mr) = |-1/2,0) and |—1/2,—1) states in the high field limit or
|F,mp) =|1/2,—1/2) and |3/2,—3/2) in the low field limit, respectively. We begin by preparing this mixture using
standard ultracold atom methods, yielding a Fermi gas with 2x 10% to 1 x 10° atoms in each spin state at temperatures
ranging from several times 7% down to 0.15-TL[37], where Th = E% /kp = h(wywyw,)/3(3N)Y/3 /kp is the trap Fermi
temperature and w;/(27), (i = z,y, z) are the trap frequencies. In our experiments, the trap Fermi energy E% ranges
from 12 to 55 h-kHz. The initial mixture is spin imbalanced with a typical majority:minority ratio of 2:1, and the gas
is held in a single-beam optical trap, with confinement along the beam axis provided by the magnetic field. Typical
trapping frequencies are 27 x 30 Hz along the beam axis and 27 x 1 — 2 kHz in the perpendicular directions. We then
expose the gas to RF radiation on the |2) < |3) transition. The radiation is initially 27 x 100kHz detuned and then
adiabatically ramped onto resonance in 47 ms, mapping the spin imbalance from the initial basis of |2) and |3) states
into an imbalance in the RF-dressed basis, which we denote by |+) and |—). In the rotating wave approximation
(RWA), these states have energies of +h£2/2 and —h€)/2, respectively. In our experiment, Q = 27 x 1.4kHz which
is small compared to other energy scales and gives a linear response [38]. Once the RF radiation is on resonance,
we allow the sample to reach equilibrium for a holding time of typically 2s. The gas is held in a magnetic field
gradient, which provides a large scalar force together with a small spin-dependent force. The spin-dependent force
is small (of the order nK/um) because the magnetic moment of the two states is very nearly equal. However, the
spin-dependent potential gradient associated with this force is sufficient to allow the dressed state populations to
exchange and reach thermodynamic equilibrium[39]. Following the hold period, we adiabatically ramp the radiation
to a 2w x 100 kHz detuning, which maps the imbalance back into the |2)-|3) basis, where we image the sample in-situ
using phase-contrast imaging.

We choose the sign of the initial and final detuning in a specific way to avoid possible bias from slight imaging
frequency offsets and /or residual initial spin imbalance. We perform the experiment with all four possible signs of initial
and final detuning, using otherwise identical procedure. To simplify the description, we use “R” and “B” to denote
initial or final detuning which is negative (red) or positive (blue). Thus a “BB” experiment consists of ramping the
RF frequency from above resonance onto the resonance, holding for 2 s, and ramping again to higher frequency. Phase
contrast images of the differential spin density from a typical experimental run after applying our enhanced principle
component algorithm[40] are shown in Fig. 1 (a) - (d), with positive signal corresponding to an excess density of state
|2). The quantities —Angp + Angrr and Angr — Angp are insensitive to any hypothetical initial imbalances that



Z/RF

FIG. 2. Differential column density measured at (a) 40.0mT where interaction is close to zero at 513nK (T/T}. = 0.63) and
(b) 81.4mT near the unitary point at 210nK (7//T% = 0.27). The red dashed lines in (a) and (b) show the non-interacting
susceptibility for a gas with the same density profile. In (b), the black solid line is from our mean-field model.

persist through the experiment, since BB/RR and BR/RB are mirrored pairs from the perspective of Landau-Zener
sweeps, which respectively leave the spin population unchanged and invert the imbalance, in the limit of no relaxation.
Similarly —Angp+Anggr and Angr —Angp are insensitive to imaging offset, because the dressed spin imbalance prior
to the final ramp is mapped onto opposite final states. Hence the quantity An = (—Angp+ Angr +Angr — Angp)/4
corrects for both possibilities. Fig. 1 (e) shows the row-summed differential signal generated by our RF method. These
data will form the basis for our analysis. It is worth noting that our method for generating the imbalance is distinct
from our imaging method[41], and that therefore any method of spin-selective imaging could be employed, such as a
quantum gas microscope, MOT recapture, or resonant ionization detection.

By calibrating with the total atom number in each spin state, we can determine the long axis differential axial
density profile Anip(z). We define an orthogonal coordinate system where Z runs along the trapping beam axis, g
is in the direction opposing gravity, and co-linear with the magnetic field and the magnetic gradient, and Z is the
remaining direction. The axial density represents the density integrated over x and y therefore. We present this
for a weakly interacting gas and a unitary gas in Fig. 2 in the scaled form An;p(z) - Rp/N, where N is the total
atomic number and Rp = \/2EL /(m(w,wyw,)?/3) is the Thomas-Fermi radius. For comparison to theoretical models,
we acquire the long axis total axial density profile nip(z), and use this information together with the local density
approximation (LDA) and a published equation of state (EoS) measurement at unitarity[42] to determine the three
dimensional density profile and temperature in our trap. Away from unitarity we use a phenomenological fit based
on a polylogarithm, which yields similar results[43]. From the density profile, we can compute the expected spin
difference from a susceptibility model and integrate to generate the expected spin difference. We do this for two
models, the ideal Fermi gas model, which describes the weakly interacting data well but not the unitary data, and a
mean field model described below.

We model the spin susceptibility of the system, which is given by

X' =0H/OM = (°F[oM?) ., . (1)
where F' is the Helmholtz free energy of the system, H = p4 — p is the analog of magnetic field, and M = Ny — N,
is the magnetization. In a mean-field picture, the interaction simply adds a temperature-independent term F; =
aM?/(2x;) to the free energy, where x{; is the non-interacting susceptibility at zero temperature (in Fermi-liquid
theory « is proportional to the parameter F{§). A more complete Fermi-liquid theory would also add an effective mass,
but the effective mass correction is small for strongly interacting Fermi gases[34]. This then results in a susceptibility
X UT) = xni (T) + ax?VIfl, where xn1(T') is the non-interacting spin susceptibility at temperature T.

At unitarity, where the entire trap has the same interaction parameter, we can scale the data into a dimensionless
form that is independent of trapping conditions, and use the LDA to express our measurement purely in terms of the
local properties of a uniform gas. In particular we consider the dimensionless integrated susceptibility given by:
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FIG. 3. Dimensionless integrated susceptibility x. The acronyms ‘NSF’ and ‘SF’ stand respectively for experimental data
with all non-superfluid and with superfluid at the center of the trap; ‘NI’ is the non-interacting Fermi gas result, ‘MF’ is our
mean-field model with a = 1.61, ‘Wlal3’, ‘Ens12’, ‘Tajl4’ and ‘Pall2’ are theoretical results extracted from Refs. 32, 29, 28
and 33 respectively, while ‘FL’ is a Fermi liquid model extracted from Ref. 32. Error bars are derived from the standard
deviation of the measurements.

where A\gp = /27h?/(mkpT) is the thermal de Broglie wavelength. This is shown in Fig. 3. For lower temperature
samples, at the center of the trap the data shows a plateau (blue points in Fig. 3). This is expected for a superfluid for
which the spin susceptibility has vanished. Indeed, the onset occurs where the local T/TrF = 0.19, below a theoretical
estimate[44], but slightly above other experiments [45, 46]. The onset is determined by performing a best fit between
our data and the mean field model. When the sample is partially superfluid, there are significant parasitic effects
that tend to balance the spins as the sample evaporates, meaning that the absolute calibration of susceptibility is no
longer possible and the calibration has to be done based on overlap with totally non-superfluid samples[47]. Taking
all the unitary data together, over a large range of temperature down to the superfluid transition, we see significant
reduction compared with the non-interacting expectation. However, we are able to describe this reduction over the
whole temperature range using the mean-field model. For comparison, we have included integrated susceptibilities
extracted from several published results for the spin susceptibility. The measured value is closest to the Fermi liquid
calculation, and it is less than the predictions with the exception of Ref. 33, which is smaller than the measurement at
the lowest temperatures. Our key result is that the susceptibility is suppressed substantially from the non-interacting
value at high temperature (well above T, and into the region where p < 0), typically more than theories have
predicted. Since among the theoretical calculations, those featuring stronger temperature dependence predict higher
susceptibilities in this temperature range, our measurement favors those models with little temperature dependence,
such as the Fermi liquid theory (taken from Ref. 32), or the calculations in Refs. 28 and 29. The exception is Ref. 33,
which prediction is in fact below the data near the superfluid phase, despite being above it in the higher temperature
range. This is consistent with there being less decrease of susceptibility with temperature than predicted in Ref. 33.
Details of how we compare these models are presented in the supplementary materials[48].

In order to evaluate the susceptibility away from unitarity, we have performed these measurements throughout
the phase diagram of the BEC-BCS crossover. Fig. 4 summarizes our main result from this perspective. We show
trap-averaged measurements of the spin susceptibility, normalized to the value for a trapped non-interacting gas with
the same atom number at zero temperature (to facilitate comparison with Ref. 49). We characterize the temperature

by the ratio T/T%. Similarly, we characterize the interaction strength as (k%a)~!, where k., = (2kaT1’§)l/2. The
solid curves are calculated with our mean-field model and take into account the experimental density profiles, which
leads to slight non-monotonic behavior for trap-averaged susceptibility[49]. The mean-field model continues to agree
well with our data throughout the phase diagram (a different mean field parameter is used for each value of the
interaction strength). Consistent with previous results[36] and theory|[28, 49], we find the trap-averaged susceptibility
at the onset of superfluidity to be about 33 4= 3% of the non-interacting value when (kra)~! = 0. Extrapolating
our model to the lowest temperatures, the susceptibility ratio with a uniform non-interacting gas would be 38 &= 1%,
slightly less than the value of approximately 50% for a model calibrated to data extrapolated from spin-imbalanced
samples at low temperature[34]. The uncertainty in these figures is purely statistical, while any of the foreseeable
systematic effects would come from parasitic equilibration or insufficient equilibration time and cause the measured
susceptibility to be too low. We believe the systematic effects are no larger than 10% of the measured signal, so 4% of
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FIG. 4. The trap-averaged spin susceptibility normalized to the zero-temperature non-interacting value for weak interactions
and across the BEC-BCS crossover. The red dotted line shows the susceptibility of a non-interacting Fermi gas as a function of
temperature. Error bars are derived from the standard deviation of many shots (for susceptibility) and from fitting uncertainty
(for temperature). Solid curves are calculated using the measured density distribution and our mean-field model under the
local density approximation, with values of the fit parameter « given by 3.5, 1.5, 1.6, and 0.9 from top to bottom.

the non-interacting value[47]. Further to the BEC side, where (k%.a)™! = 0.8, the susceptibility is drastically reduced
at all temperatures.

In conclusion, we surveyed the spin susceptibility of strongly interacting °Li gases from the BCS side to the BEC side
and from high temperatures down to the superfluid transition temperature. The temperature dependence of the spin
susceptibility can be modeled reasonably throughout the phase diagram using a mean-field model. Compared with
theoretical calculations, the data shows in general a lower susceptibility, particular at temperatures above 0.5 - Tp.
We extracted results for the integrated susceptibility of a uniform gas. The integration makes precise statements
about the behavior immediately above the transition difficult, but coupled with other measurements[34, 36] our
high-temperature results leave little room for a sharp decrease in susceptibility with reducing temperature. Future
experiments could likely reduce the uncertainty considerably by increasing the fraction of imaging photons captured,
and planned experiments imaging uniform density regions rather than integrating along the imaging axis could resolve
the region just above T, more easily. The closest analogy to a strong decrease of spin susceptibility with temperature in
the BEC-BCS crossover of ultracold Fermi gases is the far BEC side, where there may be a significant percentage-wise
reduction in the already-small susceptibility at 1.5-2 times T, and of course pairing above the transition is expected
in this range. All of this sits in contrast to spectroscopic evidence showing that even on the near BEC side coherent
excitations are absent, meaning that coherence is lost before the temperature dependence of the susceptibility deviates
significantly from mean-field form. This presents a challenge to “general theories” of pseudogap[8], since these two
phenomena would need to occur in the same order with respect to changes of the system parameters (e.g. interaction
strength, doping) across the various systems where such a theory might be applied. Finally, we mention that the
method we introduced to measure the susceptibility is versatile, and can be feasibly extended to various ultracold
atom systems, for example spinor Bose gases, 2D gases, or gases within optical lattices.
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