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We study the role of noise on the nature of the transition to collective motion in dry active matter. Starting
from field theories that predict a continuous transition at the deterministic level, we show that fluctuations induce
a density-dependent shift of the onset of order, which in turns changes the nature of the transition into a phase-
separation scenario. Our results apply to a range of systems, including models in which particles interact with
their ‘topological’ neighbors that were believed so far to exhibit a continuous onset of order. Our analytical
predictions are confirmed by numerical simulations of fluctuating hydrodynamics and microscopic models.

Within active matter studies, the transition to collective mo-
tion is a problem of both historical and paradigmatic value,
which has led to a wealth of theoretical [1–5], numerical [6–
8] and experimental works [9–12]. Thanks to their simplicity,
dry polar flocks, in which self-propelled particles stochasti-
cally and locally align their velocities, fuel an extensive re-
search field [5–7, 13–22]. Beyond the sole realm of active
matter, the statistical-physics modelling of collective motion
has disseminated to topics as diverse as animal behavior [23–
25], human crowd dynamics [26], biology [11, 27–30], or
swarm robotics [31].

The transition to collective motion is best understood in
the context of metric models, in which particles align with
neighbors within a finite distance. At the microscopic level,
the nature of the transition is now well established [5, 7, 8].
It takes the form of a phase separation between a disor-
dered gas/paramagnetic phase and a polarly ordered liq-
uid/ferromagnetic phase, separated by a coexistence region
where traveling bands are observed [32]. On the contrary, the
transition is believed to be continuous for ‘metric-free’ sys-
tems [33, 36, 38, 41], where interactions between agents is
not decided based on their relative distance [24, 34, 35, 37, 39,
40]. For these models, often referred to as topological [37],
traveling bands have indeed not been reported so far. Topolog-
ical models play an important role thanks to their relevance
to studies of groups of animals [24, 34, 35, 39] or pedestri-
ans [42], where visual cues dominate metric ones. They are
also the natural choice to model confluent tissues where topo-
logical neighborhoods determine interactions [29, 40, 43–45].
Existing numerical results on the transition are scarce and lim-
ited to particles aligning with their Voronoi neighbors [33] or
their k-nearest neighbors [38, 46].

These microscopic-level results have been rationalized us-
ing deterministic hydrodynamic theories, which typically cou-
ple a density field ρ and an order parameter field [3, 5, 47–50].
In the metric case, the phase-separation scenario can be under-
stood by considering their dynamics in one spatial dimension,
a minimal model of which is given by

∂tρ = D∂xxρ− v∂xm (1)
∂tm = D∂xxm− v∂xρ−F(ρ,m) . (2)

Here, m is akin to a magnetisation field in a spin system and
F(ρ,m) = αm + γm

3

ρ2 is a Landau term that controls fer-
romagnetic alignment [5]. Historically, Eqs (1) and (2) were
derived as a mean-field description of the active Ising model
(AIM) [5]. Here, D stems from the random hopping of par-
ticles and is the same for m and ρ, v stems from their self
propulsions, while α and γ control the alignment. Many sim-
ilar hydrodynamic models have been proposed or derived in
one and two dimensions [2–5, 12, 47, 50]. All lead to the
same conclusion: the first-order, phase-separation nature of
the transition stems from the density-dependence of the lin-
ear term: α = α(ρ). A density-dependent threshold—or
critical temperature, to continue the ferromagnetic analogy—
such that α′(ρ) 6= 0 leads to the phase-separation scenario.
The latter is characterized by two main features: homoge-
neous ordered profiles are linearly unstable close to the tran-
sition, when α . 0, and this instability leads to the emer-
gence of traveling bands [7, 48, 52]. In the topological case,
mean-field descriptions of Voronoi-based [36] and k-nearest-
neighbor models [38] both lead to a density-independent criti-
cal temperature, hence predicting a continuous onset of order.
This result is compatible with the observation that doubling
the distance between all particles, and hence reducing the par-
ticle density, does not impact the aligning dynamics. Topo-
logical models are thus expected to be much less sensitive to
density variations and the current understanding is that they
constitute a universality class distinct from metric models.

In this Letter, we show that the continuous scenario does
not survive incorporating fluctuations. To do so, we construct
a hydrodynamic description of metric-free models in which
particles align with their k nearest neighbors [24]. This re-
quires preserving the topological nature of the interactions
at the coarse-grained level, which we achieve by means of
a non-local orientation field. We show that, at the determin-
istic level, the transition is predicted to be continuous. Dress-
ing the model with noise, however, leads to a renormalized
density-dependent critical temperature that signals a phase-
separation scenario. This analytical result is supported by mi-
croscopic simulations. Finally, we show that measuring the
density-dependency of the onset of order is a simple quantita-
tive test which allows predicting the nature of the transition,
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hence solving a long-standing numerical difficulty [7, 33, 46].
All calculations below are based on the one-dimensional hy-
drodynamic theory (1)-(2) and its topological generalization.
Our results can be extended to two dimensions and to other
hydrodynamic models, as well as to more general topological
constraints [51]. The generalization of the results presented
in this Letter will be fully detailed in a later publication [55].
We complement our analytical approach by numerical simu-
lations, mostly in 2D, which are all detailed in [51]

Fluctuation-induced first-order transitions. For clarity, we
first show that dressing the ‘metric’ PDEs (1)-(2) with noise
generically yields a renormalized density-dependent critical
temperature, hence leading to phase separation, before con-
sidering the topological case. This allows presenting our an-
alytical approach in a simpler framework. We consider α in-
dependent of ρ to show that the corresponding hydrodynamic
descriptions, derived in some scaling limits [53, 54], are un-
stable to fluctuations. We complement Eq. (2) with a noise
term

∂tm = D∂xxm− v∂xρ−F(ρ,m) +
√

2σρ η , (3)

where η(x, t) is a zero-mean delta-correlated Gaussian white
noise field. Note that, hereafter, ρ(x, t) and m(x, t) represent
fluctuating fields. The order parameter m(x, t) represents the
sum of the orientations of particles located around position
x. The noise acting on m(x, t) will thus be multiplicative;
it describes the fluctuations of a sum over ∝ ρ particles and
we take it proportional to

√
ρ(x, t). We now construct the

hydrodynamics of the average fields ρ0(x, t) = 〈ρ(x, t)〉 and
m0(x, t) = 〈m(x, t)〉 to leading order in the noise strength σ,
where brackets represent average over noise realizations. In
principle, we could also complement Eq. (1) with a conserved
noise. The latter is expected to be subdominant at large scales
and we ignore it here, although our approach can be extended
to this case. Introducing δρ = ρ− ρ0 and δm = m−m0, the
dynamics of ρ0 and m0 can be approximated as

∂tρ0 = D∂xxρ0 − v∂xm0 (4)
∂tm0 = D∂xxm0 − v∂xρ0 −F(ρ0,m0)

− ∂2F
∂m2

〈δm2〉
2
− ∂2F
∂ρ2

〈δρ2〉
2
− ∂2F
∂m∂ρ

〈δmδρ〉 (5)

To close Eqs. (4) and (5), we need to compute 〈δm2〉, 〈δρ2〉,
〈δmδρ〉 as functions of ρ0 and m0. In the small noise limit,
the fluctuations δρ and δm are assumed to be small so that we
compute these correlators at the linear, Gaussian fluctuations
level [56–59]. The dynamics of δρ(x, t), δm(x, t) then read

∂tδρ = D∂2
xδρ− v∂xδm (6)

∂tδm=D∂2
xδm−v∂xδρ−

∂F
∂ρ

δρ− ∂F
∂m

δm+
√

2σρ0η (7)

For α 6= 0, this linear system of equations leads to bounded
fluctuations of δρ, δm around the homogeneous solutions of
Eq. (1) and (2). It can be solved in Fourier space and the cor-
relators appearing in (5) can be obtained explicitly as integrals
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FIG. 1. Simulations of the 2D generalization of Eqs. (1) and (3) de-
tailed in [51]. Top left: Average magnetisation as α is varied. The
transition occurs at αc < 0, shifted from the mean-field prediction
(green line). At the onset of order, inhomogeneous profiles (black
squares) separate homogeneous ordered and disordered phases (blue
dots). Parameters: D = v = γ = σ = 1, dx = 0.5, dt = 0.01,
Lx = 400, Ly = 40, ρ̄ ≡ N/(LxLy) = 1.1. Bottom: A snapshot
close to the transition shows an ordered traveling band in a disor-
dered background. Top right: The corresponding density and mag-
netization fields averaged along y. Parameters: same as before up to
Ly = 100, dx = 0.1, α = −0.9.

over k space, e.g. 〈δm2〉 =
∫

dk〈δmkδm−k〉/(2π) [51].
The alignment terms in Eq. (5) can then, consistently with
the approximation leading to a Landau form, be expanded as
F̃(ρ0,m0) = α̃m0 + γ̃m3

0/ρ
2
0. Fluctuations have thus, to this

order in σ, dressed α and γ into α̃ and γ̃. For a given set of
parameters, the integrals over k space can be computed nu-
merically. It is, however, more enlightening to compute them
explicitly in the high-temperature phase, where α > 0. The
precise expression of γ̃ is irrelevant for our purpose, and is
presented in [51]. The linear term is renormalized into

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
.(8)

Importantly, α̃ now depends explicitly on the density [60].
To first order in σ, fluctuations thus renormalize the contin-
uous transition predicted by Eqs. (1) and (2) into the standard
liquid-gas phase separation. Note that higher orders in σ have
no reason to cancel the dependence of α̃ on density and we
thus expect our conclusions to hold non-perturbatively in σ.

To confirm our predictions, we carried out simulations
of the scalar 2D generalization of the stochastic PDEs (1)
and (3) [51]. The continuous transition predicted by Eqs. (1)
and (2) is replaced by the standard liquid-gas framework [5,
61], as shown in Fig. 1 by the emergence of traveling-band
solutions.

Field theory for topological interactions. The study of the
dynamics (1) and (3) thus showed that fluctuations generically
make the transition to collective motion first order in metric
models. This applies, in particular, to the hydrodynamic the-
ory proposed for Voronoi-based interactions in [36]. We now
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propose an alternative hydrodynamic description which pre-
serves the topological nature of the interactions at the coarse-
grained level. To do so, we focus on models in which parti-
cles align with their k nearest neighbors, which are commonly
used to model animal and human behavior [24, 34, 35, 39, 42].
Numerically, the transition has been reported to be continu-
ous in systems of linear sizes of order L ∼ 102, for up to
N = 104 − 105 particles [38, 46]. To proceed, we intro-
duce a coarse-grained field y(x) which measures the interac-
tion range of a particle at x:

∫ x+y(x)

x−y(x)

ρ(z)dz = k . (9)

Particles at position x then align with a ‘topological’ field
m̄(x, t) computed over their k nearest neighbours through

m̄(x) =
1

k

∫ x+y(x)

x−y(x)

m(z)dz . (10)

Doubling the distance between particles does not alter the val-
ues of m̄(x), consistent with microscopic topological mod-
els [24, 33]. To construct the topological counterpart of
the Landau term F(ρ,m) appearing in the metric dynamics,
let us recall how the latter is constructed from microscopic
models. In a ferromagnetic context, F can be seen as the
small-magnetisation expansion of a more complex function
Fferro = 2m cosh(βp) − 2ρ sinh(βp), where p = m/ρ is
the local magnetisation per particle and β the inverse tem-
perature. The fields ρ and m enter Fferro through counting
statistics, (ρ ± m)/2 representing the local densities of par-
ticles with plus or minus spins. The field p, on the other
hand, enters via the aligning rate at which a spins s flips, e.g.
W (s → −s) = Γ exp(−βsp). When particles align stochas-
tically with a topological field m̄, the Landau term thus simply
becomes Fferro = 2m cosh(βm̄)− 2ρ sinh(βm̄). Expanding
to third order in the fields then yields:

Ftopo (m, ρ, β) = Γ
(
2m−2ρβm̄− ρβ

3

3
m̄3+β2mm̄2

)
(11)

in which, for simplicity, we retain β as the sole control param-
eter. At mean-field level, our topological field theory is thus
given by Eq. (1) and (2), with F replaced by Ftopo.

Homogeneous solutions ρ0,m0 correspond to y(x) =
k/(2ρ0) and m̄ = m0/ρ0. The linear term in Ftopo then
reduces to 2Γ(1 − β)m0, leading to a density-independent
transition at βm = 1. Linear stability analysis of the ho-
mogeneous solutions then shows that disordered and ordered
solutions are linearly stable for β < βm and β > βm, re-
spectively [51]. Our topological field theory thus predicts a
continuous transition at the mean-field level.

Let us now assess the effect of dressing the dynamics of the
order parameter with noise: we consider the stochastic dy-
namics (1) and (3), albeit with F replaced by Ftopo. Here
also, the noise is multiplicative and proportional to

√
ρ(x, t)

since m(x, t) is the sum of the orientations of particles lo-
cated around position x. To construct the dynamics of the
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FIG. 2. Top Left: Phase diagram of the microscopic topological
model defined in Eqs. (13) and (14). The homogeneous ordered
(blue) and disordered (green) regions are separated by a coexistence
phase (red). The mean-field critical temperature is β = 1 (dashed-
lined). The red lines are guide to the eyes which show how the
transitions shift as the mean density varies. Bottom: Snapshot of
a propagating band corresponding to the black triangle in the phase
diagram. Blue and red particles correspond to positive and nega-
tive spin. The corresponding density and magnetization fields, aver-
aged over y and time, are shown in the top-right panel. Parameters:
D = 8, Ly = 400, Lx = 2000, k = 3, Γ = 0.5, v = 0.9.

average fields ρ0 and m0 perturbatively in σ, we first stress
that Eq. (9) directly enslaves the field y(x) to ρ(x). There are
thus, again, only two independent fields, ρ(x, t) and m(x, t),
so that Eq. (7) is still valid, up to F → Ftopo. The expression
of Ftopo being, however, more complicated than in the metric
case, the algebra is correspondingly more involved. We detail
in [51] the renormalization of the linear part of Ftopo, which
controls the nature of the transition. To first order in the noise
strength σ, we find

(β − 1)m0 →
[
β − 1− σ

k
g

(
β,

Γk

vρ0
,

ΓD

v2

)]
m0 , (12)

with g a positive function whose expression is provided as an
integral in [51].

Importantly, the linear term in the aligning dynamics of
m0 has again become density-dependent, hence predicting a
phase-separation scenario. This is confirmed by numerical
simulations of (1) and (3) with F → Ftopo, which again re-
veal the existence of inhomogeneous propagating bands [51].
Our results thus also predict a fluctuation-induced phase-
separation scenario for topological models.

Microscopic models with k-nearest-neighbors interactions.
To test the above predictions, we first consider an off-lattice
active Ising model [5, 61] in which N particles move in an
Lx × Ly domain with periodic boundary conditions. Each
particle carries a spin si = ±1 and evolves according to the
Langevin dynamics

ṙi = si v0 x̂ +
√

2Dηi , (13)

where v0 sets the self-propulsion speed andD sets the strength
of the unit-variance Gaussian white noise ηi. Spins flip from
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θ

FIG. 3. Simulations of the topological Vicsek model in 2D. At small
noise, the system is disordered at low enough densities. Increasing
the density then leads to an onset of order accompanied by propa-
gating bands. Particles align with their k = 3 nearest neighbors.
Parameters : Lx = 2000, Ly = 400, σ = 0.08, k = 3, v0 = 0.2,
∆t = 1, ρ̄ = 0.25 (top) and ρ̄ = 0.4 (bottom).

si to −si at rate W (si) given by

W (si) = Γe−βsim̄i , where m̄i =
1

k

∑

j∈Ni

sj , (14)

where Ni is the set of the k-nearest neighbours of particle
i and m̄i their average magnetization. Note that a mean-
field treatment of the aligning dynamics (14) indeed leads
to Eq. (11). In agreement with our predictions, the model
exhibits a first order transition to collective motion, akin to
a liquid-gas phase separation: the onset of order at β &
βc(ρ0) occurs through the emergence of an ordered propagat-
ing band (Fig. 2). Unlike the mean-field critical temperature,
the boundaries of the coexistence region show a clear depen-
dence on the mean density ρ̄.

To probe the generality of our results, we then implemented
a topological version of the Vicsek model [6, 7] in which the
particles align with their k nearest neighbors. We consid-
ered N point particles carrying unit propulsion vectors ui and
moving in a Lx × Ly domain with periodic boundary condi-
tions. At every time step, the particles align with the average
direction of their k nearest neighbors:

arg
[
ui

]
→ arg

[1

k

∑

j∈Ni

uj

]
+ ση , (15)

where η is uniformly drawn in [−π, π]. The particles then
move a distance v0∆t along their propulsion vector. Propagat-
ing bands are observed close to the onset of collective motion
(Fig. 3). Overall, despite being usually considered resilient
to density fluctuations, the topological interactions studied in
this article thus lead to a phase-separation scenario.

A numerical test of the nature of the transition. Since the in-
troduction of the Vicsek model, determining numerically the
nature of the transition has proven a difficult task [7]. The
weakly first-order nature of the transition indeed challenges
standard methods: in finite systems, the variations of the or-
der parameter as a function of control ones (noise, density,
etc.) often misleadlingly suggests a second order scenario.
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FIG. 4. Magnetization vs inverse temperature β for the RAM (left),
the LAM (center), and the topological model (13)-(14) (right). Only
the latter exhibits traveling bands (black squares). Blue crosses and
red dots correspond to mean densities ρ̄ = 0.25 and ρ̄ = 0.5, re-
spectively. Parameters: Lx = 2000, Ly = 400, D = 8, v = 0.9,
Γ = 0.5, k = 3. For LAM, k = 4.

Our results suggest an efficient alternative: measuring the de-
pendency of the onset of order on the average density. We
illustrate this by contrasting our topological model with sim-
pler ones in which the aligning dynamics is disconnected from
spatial positions, hence trivially ensuring that the transition re-
mains continuous.

We consider N scalar spins moving in a Lx × Ly domain
with periodic boundary conditions according to the Langevin
equation (13) with two different aligning dynamics [62]. In
the Random Alignment Model (RAM), the aligning dynam-
ics is given by (14), with m̄i computed over k spins chosen
at random at every time step. In the Loyal Alignment Model
(LAM), on the contrary, alignment occurs with the same set of
k neighbours throughout the simulations, irrespective of the
particle positions. In our simulations, we chose k = 4 and
assigned to each particle its nearest neighbours on an initial
square lattice. Simulations of both systems lead to continuous
transitions, without the emergence of inhomogeneous phases.
Figure 4 shows that the behaviors of the global magnetization
as the temperature is varied are hard to distinguish between
LAM, RAM and our topological microscopic model. Repeat-
ing these measurements at different densities however reveals
a density-dependence of the onset of order in the latter case,
but not in LAM & RAM. Measuring βc as ρ̄ varies thus con-
stitutes a simple and robust test of the nature of the transition.

Conclusion. In this Letter, we have set up a field-theoretical
approach which captures the impact of noise on the hydrody-
namic description of the transition to collective motion. In-
troducing a continuous description of metric-free models, we
have shown that, contrary to common belief, the transition
in topological models is not critical and involves a phase-
separation scenario, hence falling into the same universality
class as metric models. This fluctuation-induced phase sep-
aration relies on a noise-induced dependency of the onset of
order on the average density, which can be exploited in nu-
merical simulations to assess the nature of the transition. This
is a more stringent test than measuring putative critical ex-
ponents, which are unlikely to distinguish weakly-first-order
transitions from the liquid-gas scenario. Note that our topo-
logical field theory addressed the case of k-nearest neighbours
interaction and one may wonder whether our conclusion holds
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for more generic topological fields, e.g. describing Voronoi
neighbours. As shown in [51], dimensional analysis suggests
that our results should hold for a broader class of topologi-
cal fields m̄(x) = G(x, [ρ,m]), whose numerical studies are
deferred to a longer account of our work [55].

Furthermore, while we have here focused on theoretical and
numerical approaches, the coefficients of the linearized Toner-
Tu equations have been measured experimentally in flocks of
Quincke rollers [63]. Determining the functional form of α(ρ)
could thus also be a direct experimental probe of the order
of the transition in systems in which finite-size effects would
prevent the existence of polar bands.

We have here studied the framework of polar flocks, but our
methods can be exported to a broader class of problems, from
nematic alignment to models in which the coupling between
density and alignment is qualitatively altered, from Malthu-
sian [22] to incompressible [64] or Lévy flocks [65]. Finally,
describing non-local interactions at the field-theoretical level
had proven a difficult problem so far, which our topological
theory has overcome. The relevance of such non-local interac-
tions goes beyond active matter: from cellular [29, 40, 43–45]
to social interactions [42, 66]; we hope that our methodol-
ogy will help build coarse-grained descriptions of metric-free
problems in other fields.
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105, 098001 (2010).
[11] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch,

Nature 467, 73 (2010).
[12] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and

D. Bartolo, Nature 503, 95 (2013).
[13] F. Ginelli, F. Peruani, M. Bär, and H. Chaté, Physical Review
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