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Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions
frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard
nanodevice architecture, involving a dot coupled to both a quantum box and metallic leads, can host
an exotic SO(5) symmetry Kondo effect, with entangled dot and box charge and spin. This NFL
state is surprisingly robust to breaking channel and spin symmetry, but destabilized by particle-hole
asymmetry. By tuning gate voltages, the SO(5) state evolves continuously to a spin and then “flavor”
two-channel Kondo state. The expected experimental conductance signatures are highlighted.

Nanoelectronic circuit realizations of fundamental
quantum impurity models allow the nontrivial physics
associated with strong electron correlations to be probed
via quantum transport measurements [1]. Quantum dot
devices, in particular, can exhibit the Kondo effect at
low temperatures [2]: a localized magnetic moment on
the dot is dynamically screened by conduction electrons
in the metallic leads. Single-dot devices can behave as
single-electron transistors, with Kondo-enhanced spin-
flip scattering strongly boosting the conductance between
source and drain leads measured in experiments [3–5].

The conventional Kondo effect [6] involves a localized
“impurity” spin- 1

2 degree of freedom, coupled to a single
effective channel of conduction electrons, and has SU(2)
spin symmetry. However, the Kondo effect is also ob-
served in more complex systems, such as coupled quan-
tum dot devices [7, 8] and single-molecule transistors
[9, 10], involving spin and orbital degrees of freedom.
In such systems, it is possible to realize variants of the
classic spin- 1

2 single-channel Kondo paradigm; e.g. orbital
[11], spin-1 [12, 13], and ferromagnetic [14] Kondo effects.
In particular, the symmetry of the effective model is im-
portant in determining the low-energy physics. Kondo
effects with SU(4) symmetry can be realized in double
quantum dots [15, 16] and carbon nanotube dots [17, 18],
and also have Fermi liquid (FL) ground states.

More exotic non-Fermi liquid (NFL) states can be re-
alized in multi-channel systems, where competing inter-
actions frustrate exact screening of the dot spin or charge
degrees of freedom at special high-symmetry points [19].
This results in a residual dot entropy characteristic of
fractionalized excitations, and anomalous conductance
signatures [20, 21]. However, this kind of NFL physics
is typically delicate, being found at the quantum critical
point between more standard FL phases, and is unstable
to relevant symmetry-breaking perturbations.

Experimentally, the major challenge to realize NFL
Kondo physics in quantum dot devices is to prevent mix-
ing between multiple conduction electron channels. Two
prominent scenarios to achieve this utilize an interacting
quantum box (“Coulomb box”) [22, 23]. The quantum

box is a large quantum dot, hosting a macroscopically
large number of electrons, but due to quantum confine-
ment has a discrete level spacing δ and finite charging
energy EC . For δ < T < EC the box effectively provides
a continuum reservoir of conduction electrons, but also
displays charge quantization [24].

Spin-two channel Kondo (s-2CK) physics can be real-
ized in a device involving a small quantum dot coupled
to a quantum box as well as metallic leads [22]. The low-
energy effective model consists of a dot spin- 1

2 exchange
coupled to two conduction electron channels (leads and
box), with mixing between the channels suppressed by
the large box charging energy. Both channels compete
to Kondo-screen the dot spin, resulting in an NFL state.
Breaking channel or spin symmetry relieves the frustra-
tion and results in a standard FL state. This physics was
realized experimentally in Refs. [25, 26].

By contrast, a charge-2CK (c-2CK) effect can be real-
ized when a quantum box tuned to its charge degeneracy
point is coupled to two leads, as proposed in Ref. [23] and
realized experimentally in Refs. [27, 28]. In this case, the
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Figure 1. Right: Schematic of the device: a quantum dot
coupled to a quantum box and source/drain leads. Left: NRG
phase diagram spanned by dot and box gate voltages, Vd ∝
η/Ud and VB ∝ nB, showing the NFL line for various channel
asymmetries tL/tB. SO(5) point located at nB = ± 1

2
and

η = 0. Plotted for constant Ud = 0.3, EC = 0.1 and tB = 0.12.
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macroscopic box charge states play the role of a pseu-
dospin impurity. Distinctive signatures of the resulting
NFL state are observable in quantum transport [27–34].

In this Letter, we revisit the device of Refs. [22, 25, 26]
but now examine the full phase diagram as function of
dot and box gate voltages, which in turn control the dot
and box occupancies – see Fig. 1. We show that the emer-
gent SU(4) symmetry of the system arising when the dot
hosts a local moment and the box is at its charge degen-
eracy point, is reduced to SO(5) at particle-hole symme-
try. Although the SU(4) state is an FL [35], a novel NFL
Kondo effect arises at the SO(5) point, in which both
dot and box charge and spin are maximally entangled.
We achieve a detailed understanding of this state using
a combination of conformal field theory [36–38] (CFT),
bosonization [39], and numerical renormalization group
[40, 41] (NRG) techniques. Remarkably, the NFL physics
at this point is robust to breaking channel and/or spin
symmetry. Furthermore, we show that by tuning gate
voltages, the SO(5) state evolves continuously into the
more familiar s-2CK state of Refs. [22, 25, 26], and then
into a “flavor”-2CK (f-2CK) effect when the dot local mo-
ment is lost but box charge fluctuations persist. The dis-
tinctive transport signatures associated with this physics
are accessible in existing experimental setups.
Models and mappings.– The device illustrated in Fig. 1

is described by the Hamiltonian H = H0 + HB + Hd +∑
γ H

γ
hyb, with γ = Ls, Ld, B for the source/drain

leads and box, respectively. H0 =
∑
γ,k,σ εγkc

†
γkσcγkσ

describes the three conduction electron reservoirs, while

HB = EC

(
N̂B −N0 − nB

)2

, (1)

Hd =
∑
σ

εdd
†
σdσ + Udd

†
↑d↑d

†
↓d↓ , (2)

describe the box Coulomb interaction and the dot. The
dot is tunnel-coupled to the leads and box via Hγ

hyb =∑
k,σ(tγkd

†
σcγkσ+H.c.). Here, σ =↑, ↓ denotes (real) spin,

and dσ or cγkσ are operators for the dot or conduction
electrons, respectively. N̂B =

∑
k,σ c

†
BkσcBkσ is the total

number operator for the box electrons. The dot and box
occupations are controllable by gate voltages Vd ∝ η =
εd +

1
2Ud and VB ∝ nB, respectively. For simplicity we

now take equivalent conduction electron baths εγk ≡ εk
with a constant density of states ν defined inside a band
of halfwidth D = 1, such that εk = vF k at low energies.
We define t2γ =

∑
k |tγk|2 and t2L = t2Ls + t2Ld.

Following Ref. [42], we incorporate the box interaction
term, Eq. 1, into the hybridization,

HB+H
B
hyb → EC

(
T̂ z − nB

)2

+
∑
k,σ

(tBkd
†
σcBkσT̂

−+H.c.) ,

where T̂ ± =
∑
NB
|NB ± 1〉〈NB| are ladder operators for

the box charge, and T̂ z =
∑
NB

(NB−N0)|NB〉〈NB|. Note

that the model possesses the symmetry nB → nB ± 1.
Particle-hole (ph) asymmetry is controlled by nB and η;
the model is invariant to replacing nB → −nB and η →
−η, related by a ph transformation. Exact ph symmetry
arises at η = 0 for any integer or half-integer nB.

For the NRG calculations presented here, only a finite
number of charge states around the reference N0 are re-
quired to obtain converged results [40, 41, 43].
Spin-2CK regime.– For large box charging energy EC

and deep in the dot and box Coulomb blockade regime
(near the point η = 0 and nB = 0), the dot hosts an
effective spin- 1

2 local moment, and the box has a well-
defined number of electrons N0. At low temperatures
T � EC , Ud virtual charge fluctuations on the dot and
box due to Hhyb generate the spin-flip scattering respon-
sible for the Kondo effect. However, finite EC blocks
charge transfer between the leads and box, giving rise to a
frustration of Kondo screening and the possibility of NFL
physics [22]. In this regime, a standard Schrieffer-Wolff
transformation (SWT) yields the s-2CK model [19, 22],

Hs−2CK = H0 + ~Sd ·
(
JL

~SL + JB
~SB

)
, (3)

where ~Sd is a spin- 1
2 operator for the dot, while ~Sα=L,B =

1
2

∑
σ,σ′ c

†
ασ~σσσ′cασ′ , with cBσ = 1

tB

∑
k tBkcBkσ and

cLσ = 1
tL

∑
k(tLskcLskσ + tLdkcLdkσ) the local conduction

electron orbitals at the dot position, and where

JL =
8t2L
Ud

[
1−

(
2η
Ud

)2
]−1

; JB =
8t2B
U ′d

[
1−

(
2η′

U ′d

)2
]−1

(4)

with U ′d = Ud + 2EC and η′ = η + 2ECnB. Deep in
the s-2CK regime, NFL physics arises when JL = JB.
For given physical device parameters Ud, EC , tL, tB, Eq. 4
implies the existence of two NFL lines in the (nB, η) plane
related by the symmetry η → −η and nB → −nB, see
Fig. 1. NFL physics can therefore be accessed by tuning
the gate voltages Vd ∝ η and VB ∝ nB, as demonstrated
experimentally in this regime in Refs. [25, 26]. At the ph
symmetric point η = nB = 0, s-2CK arises for tB = ζtL
with ζ2 ' 1+2EC/Ud. Although this NFL state is robust
to ph asymmetry, it is destabilized by channel asymmetry
JL 6= JB or spin asymmetry B 6= 0 [44].
SO(5) Kondo.– At nB = 1

2 , the box states with N0

and (N0 + 1) electrons are exactly degenerate. Neglect-
ing other box charge states (which are ∼ EC higher
in energy), we may define charge pseudospin- 1

2 oper-
ators T̂+

B = |N0 + 1〉〈N0|, T̂−B = (T̂+
B )†, and T̂ zB =

1
2 (|N0+1〉〈N0+1|−|N0〉〈N0|). The charge pseudospin is
flipped by electronic tunneling between the dot and box.
The low-energy effective model is obtained by project-
ing onto the dot spin and box pseudospin sectors using a
generalized SWT. We now consider explicitly the special
point with ph symmetry (nB = 1

2 and η = 0) and channel
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symmetry (JL = JB ≡ J , which implies tB = ξtL with
ξ2 ' 1 + 2EC/U

′
d), whence [45, 46]

Heff = H0 + J ~Sd ·
(
c†ασ

~σσσ′

2
cασ′

)
+ VzT̂

z
B

(
c†ασ

τ zαβ
2
cβσ

)
+Q⊥~Sd ·

(
c†ασ~σσσ′(τ

+
αβT̂

−
B + τ−αβT̂

+
B )cβσ′

)
(5)

where the Pauli matrices σa (τ b) act in spin (channel)
space, and a sum over repeated indices is now implied.

Although initially the coupling constants in Eq. 5 take
different values, perturbative scaling [47] shows that the
model develops an emergent symmetry J = Vz = Q⊥ at
an isotropic low-temperature fixed point. Then the RG
equations reduce to dJ/dl = 3J2, and we have a Kondo
scale T SO(5)

K ∼ D exp(−1/3νJ).
The fixed point has an unusual SO(5) symmetry, which

can be seen by writing Eq. 5 in the symmetric form,

HSO(5) = H0 + J

10∑
A=1

JAMA , (6)

where JA = c†ασT
A
αβσσ′cβσ′ and MA = f†ασT

A
αβσσ′fβσ′

in terms of a fermionic ‘impurity’ operator carrying
both ‘flavor’ and spin labels subject to the constraint
f†ασfασ = 1 such that Ŝad = 1

2f
†
ασσ

a
σσ′fασ′ and T̂ bB =

1
2f
†
αστ

b
αβfβσ. Here, {TA} are the ten generators of

SO(5) [48], T ab = −T ba (with a, b = 1...5) satisfying the
algebra [T ab, T cd] = −i(δbcT ad−δacT bd−δbdT ac+δadT bc)
in the 4-dimensional spinor representation,

1
2σ

a=1,2,3τ1 = T a4 , 1
2σ

1τ0 = T 23 , 1
2σ

3τ0 = T 12 ,
1
2σ

a=1,2,3τ2 = T a5 , 1
2σ

2τ0 = T 31 , 1
2σ

0τ3 = T 45 ,

establishing the equivalence between Eqs. 5 and 6.
We applied the machinery of CFT [36–38] to analyze

the fixed point properties using the symmetry decompo-
sition U(1)c × Z2× SO(5)1. Here, U(1) corresponds to
the charge sector and Z2 is an Ising model. The primary
fields of the SO(5)1 theory consist of a singlet with scal-
ing dimension 0, a spinor with scaling dimension 5

16 , and
a vector with scaling dimension 1

2 [49]. The SO(5) fixed
point can be obtained by fusion with the spinor under
which the impurity transforms.

The finite size spectrum provides a means of character-
izing the fixed point. For an effective 1D system of length
L, the energies (E) in units of 2πvF /L, and correspond-
ing degeneracies (#), can be determined from CFT. We
find [43] (E,#) = (0, 2); (1

8 , 4); (
1
2 , 10); (

5
8 , 12); (1, 26); ...,

consistent with our NRG results, and establishing the
new SO(5) fixed point as NFL. Interestingly, this spec-
trum is identical to that of the standard s-2CK model
[37]. The entropy at the fixed point is given in terms
of the modular S-matrix within CFT [36–38], and here
yields Simp = 1

2 ln(2), consistent with NRG (top panel,
Fig. 2); again reminiscent of s-2CK.

Figure 2. Physical properties of the SO(5) Kondo effect, ob-
tained by NRG for nB = 1

2
, η = 0, Ud = 0.3, EC = 0.1,

tL = 0.085, and tB ' ξtL = 0.1. (a) Impurity contribution to
entropy Simp(T ), showing partial quenching of the entangled
spin and flavor degrees of freedom on the scale of the Kondo
temperature TK ∼ 10−4. For TK � T � EC , free impurity
spin and flavor give a ln(4) entropy, while Simp(T ) =

1
2
ln(2)

for T � TK, characteristic of the free Majorana fermion at
the SO(5) fixed point. (b) T = 0 local spin and flavor dynam-
ical susceptibilities, both showing apparent FL-like behavior
χloc(ω) ∼ ω for ω � TK. (c) Linear response conductance
through the dot G(T )/G0 (blue line), with G = 1

2
G0 at T = 0,

and leading behavior G(T ) − G(0) ∼ +(T/TK)
3/2G0 (inset,

dashed line). The standard spin-2CK conductance lineshape
is given for comparison as the dotted line.

However, differences from the standard s-2CK picture
can be seen in dynamical quantities such as the local
susceptibilities and conductance – see middle and bot-
tom panels in Fig. 2. Since the impurity spin ~S and
pseudospin ~T operators are absorbed into the conduction
electrons at the strong coupling fixed point, they must
transform among the 10 generators of SO(5). But such
fields occur only as descendants in SO(5)1, and so spin-
spin correlation functions appear FL-like, χsloc(ω) ∼ ω
(similarly for flavor susceptibility). This contrasts to the
regular k-channel Kondo effect: the spin SU(2)k theory
contains a vector field which transforms as the 3 compo-
nents of the impurity spin, with scaling dimension 2

2+k ,
which leads to anomalous NFL properties in the spin
susceptibility χsloc ∼ ω

− k−2
k+2 . The SO(5) point appears to

have been missed in Ref. [45] because of the apparent FL
scaling of its susceptibilities. However, the 1

2 ln(2) resid-
ual entropy is a clear NFL signature. Furthermore, we
find a non-monotonic conductance, with a NFL leading
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power law G(T ) − G(0) ∼ +T 3/2. This contrasts to s-
2CK conductance which approaches its fixed point value
as −
√
T [22, 50–52], or −T 2 FL conductance for 1CK [2].

To gain further insight, we expand on the bosoniza-
tion and refermionization techniques [53] developed by
Emery and Kivelson (EK) for the s-2CK model [39],
and include the coupling to the flavour degree of free-
dom. This method allows us to express a spin and flavor
anisotropic version of Eq. 5 in terms of local fermions
d ∝ S−d and a ∝ T−B , relating to impurity spin and fla-
vor degrees of freedom, with corresponding Majorana op-
erators d+ = 1√

2
(d† + d) and d− = 1√

2i
(d† − d), and

similarly for a, as well as a 1D bulk fermionic ‘spin-
flavor’ field for the conduction electrons denoted ψsf (x),
with Majorana components χ+ = 1√

2
(ψ†sf(0) + ψsf(0)),

χ− = 1√
2i
(ψ†sf(0) − ψsf(0)). The resulting EK Hamilto-

nian takes the simple quadratic form,

HEK = H0 + iJ⊥d−χ+ − 2iQ⊥d+a−. (7)

Details of the derivation are given in the Supplemental
Material [43]. The J⊥ term is the usual EK form of the
s-2CK interaction. The spin-flavour coupling term Q⊥
couples and gaps out the pair d+ and a−. Unlike in the
s-2CK model where d+ remains decoupled, here we see
that it is a+ that is free at the SO(5) fixed point, and
is responsible for the 1

2 ln(2) residual entropy. The fixed
point properties of Eq. 7 describe the physical quantum
dot system because the artificial spin/flavor anisotropies
used to obtain it are RG irrelevant.
Stability of SO(5) Kondo.– We consider the effect of

symmetry-breaking perturbations at the SO(5) point.
Channel asymmetry, corresponding to tB 6= ξtL in the

bare model, generates an extra term in Eq. 5 given by
δHch = J−~Sd ·(c†ασ~σσσ′τ zαβcβσ′) with J− ∝ JB−JL. Un-
der the EK mapping, this becomes δHch = −iJ−d+χ−
as in the s-2CK model. But in contrast to the s-2CK
model, the SO(5) point is not destabilized by this pertur-
bation because the d+ Majorana involved in J− is already
gapped out by the spin-flavor coupling Q⊥ in Eq. 7. The
a+ Majorana remains free. Breaking spin symmetry by
applying a dot magnetic field δHs = BŜzd = −iBd+d− is
similarly irrelevant at the SO(5) fixed point. The NFL
physics is therefore robust to breaking channel and spin
symmetries. This is directly confirmed by NRG [43].

Ph symmetry is broken by η 6= 0 for nB = 1
2 . Perform-

ing the SWT yields an additional contribution to Eq. 5
of the form [46] δHph = 1

2V⊥
∑
b=1,2 T̂

b
B(c
†
αστ

b
αβcβσ) +

Qz
∑
a=1,2,3 Ŝ

a
d T̂

3
B(c
†
ασσ

a
σσ′τ

3
αβcβσ′) where V⊥, Qz ∝ η.

This perturbation contains an additional 5 generators,
which together with the 10 from SO(5) form the defining
representation of SU(4). Indeed, under RG the system
flows to a fully isotropic SU(4) FL fixed point, as dis-
cussed in Refs. [16, 35, 45], with zero residual entropy.
Breaking ph symmetry therefore destabilizes the NFL
SO(5) fixed point, with an emergent FL crossover scale

T ∗ ∼ η2 [43]. Unusually then, lowering the symmetry
of the bare model by introducing finite η leads to a low-
energy SU(4) fixed point with higher symmetry than the
SO(5) fixed point obtained at η = 0. Applying the EK
mapping, we obtain [43] δHph = −iV⊥a+χ−. This is an
RG relevant term with scaling dimension 1

2 : the previ-
ously free a+ Majorana is now coupled to the χ− field,
quenching the 1

2 ln(2) entropy and leading to an FL state,
with χs,floc ∼ ω and G(T )−G(0) ∼ T 2 [54].

Figure 3. Evolution along the black NFL line in Fig. 1. (a)
T = ω = 0 susceptibilities χs

loc (black), χ
f
loc (red), and Kondo

temperature TK (blue). Flavor fluctuations are suppressed in
the box Coulomb blockade regime, while spin fluctuations are
suppressed as the dot local moment is lost for nB → − 1

2
. (b)

Behavior near nB = 1
2
showing χs

loc(0) ∼ ( 1
2
−nB)

2 (consistent
with χs

loc(ω) ∼ ω), while χf
loc remains finite. (c) TKχ

s
loc (black

dashed) and TKχ
f
loc (red dashed) showing crossover from spin-

flavor to spin to flavor 2CK as nB is varied from + 1
2
to − 1

2
.

Full phase diagram.– We now explore the entire (nB,η)
plane using NRG, focusing on the quantum critical lines
along which NFL physics can be realized in experiment
– see Fig. 1. In practice, we tune η for a given nB to
find the critical point, which we identify in NRG from its
characteristic 1

2 ln(2) residual entropy.
An effective flavor field is generated on moving away

from nB = 1
2 . The resulting perturbation δHf = Bf T̂

z
B,

with Bf = EC(1−2nB), breaks ph symmetry and is there-
fore RG relevant at the SO(5) fixed point. However, the
two sources of ph asymmetry from η 6= 0 and nB 6= 1

2
can cancel out (close to the SO(5) point this arises along
the line 2Q⊥V⊥ = J−Bf [54]). NRG results confirm the
continuous evolution of the NFL state on moving from
nB = 1

2 into the box Coulomb blockade regime centered
on nB = 0. In particular, the spin and flavor suscepti-
bilities along the NFL lines in Fig. 3 show the crossover
from spin-flavor Kondo to s-2CK.

The NFL line with tB/tL = ζ (blue line, Fig. 1) is
invariant to the ph transformation nB → −nB and η →
−η, and smoothly connects spin-flavor Kondo at all half-
odd-integer nB with s-2CK at all integer nB. For tB/tL <
ζ (green and pink lines, Fig. 1), the NFL lines terminate,
signalling that the effective ph asymmetry from nB can
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no longer be compensated by tuning η.
By contrast, for tB/tL > ζ (red and black lines, Fig. 1),

the NFL lines continue into an unexpected region of the
phase diagram where |η|/Ud > 1

2 . Here spin fluctuations
are suppressed since the dot no longer hosts a local mo-
ment, but flavor fluctuations are enhanced (see Fig. 3).
The NFL lines in this regime diverge with η → ±∞ as
nB → ± 1

2 , and f-2CK dominates. Along the crossover
from s-2CK to f-2CK, spin and flavor fluctuations be-
come equally balanced at the dot charge degeneracy point
|η| = 1

2Ud. The NFL state at this point develops at a
strongly enhanced Kondo temperature (Fig. 3), making
it particularly well suited to experimental investigation.
Conclusions.– We revisit a classic model describing

quantum dot/box experiments used to probe NFL
physics, uncovering a rich range of new physics, includ-
ing a novel spin-flavor SO(5) Kondo effect. We study
the evolution of the NFL line as a function of dot and
box gate voltages using a combination of analytical
and numerical techniques, showing that the well-known
s-2CK effect can continuously transform into the f-2CK
or SO(5) Kondo effects. Distinctive experimental
signatures of this new physics should be observable in
conductance [54].

Acknowledgments.– AKM and ES thank the Stew-
art Blusson Quantum Matter Institute (UBC) for travel
support. AKM acknowledges funding from the Irish
Research Council Laureate Awards 2017/2018 through
grant IRCLA/2017/169. ES acknowledges support from
ARO (W911NF-20-1-0013), the Israel Science Founda-
tion grant number 154/19 and US-Israel Binational Sci-
ence Foundation (Grant No. 2016255). IA acknowledges
support from NSERC Discovery Grant 04033-2016.

[1] L. L. Sohn, L. P. Kouwenhoven, and G. Schön, Meso-
scopic electron transport, Vol. 345 (Springer Science &
Business Media, 2013).

[2] M. Pustilnik and L. Glazman, Journal of Physics: Con-
densed Matter 16, R513 (2004).

[3] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu,
D. Abusch-Magder, U. Meirav, and M. Kastner, Nature
391, 156 (1998).

[4] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen-
hoven, Science 281, 540 (1998).

[5] W. Van der Wiel, S. De Franceschi, T. Fujisawa, J. Elz-
erman, S. Tarucha, and L. Kouwenhoven, science 289,
2105 (2000).

[6] A. C. Hewson, The Kondo Problem to Heavy Fermions
(Cambridge University Press, 1997).

[7] H. Jeong, A. M. Chang, and M. R. Melloch, Science 293,
2221 (2001).

[8] J. Malecki, E. Sela, and I. Affleck, Physical Review B
82, 205327 (2010).

[9] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and
H. Park, Nature 417, 725 (2002).

[10] A. K. Mitchell, K. G. Pedersen, P. Hedegård, and
J. Paaske, Nature communications 8, 1 (2017).

[11] R. López, D. Sánchez, M. Lee, M.-S. Choi, P. Simon, and
K. Le Hur, Physical Review B 71, 115312 (2005).

[12] S. Sasaki, S. De Franceschi, J. Elzerman, W. Van der
Wiel, M. Eto, S. Tarucha, and L. Kouwenhoven, Nature
405, 764 (2000).

[13] J. Paaske, A. Rosch, P. Wölfle, N. Mason, C. Marcus,
and J. Nygård, Nature Physics 2, 460 (2006).

[14] A. K. Mitchell, T. F. Jarrold, and D. E. Logan, Physical
Review B 79, 085124 (2009).

[15] A. Keller, S. Amasha, I. Weymann, C. Moca, I. Rau,
J. Katine, H. Shtrikman, G. Zaránd, and D. Goldhaber-
Gordon, Nature Physics 10, 145 (2014).

[16] L. Borda, G. Zaránd, W. Hofstetter, B. Halperin, and
J. Von Delft, Physical review letters 90, 026602 (2003);
M. R. Galpin, D. E. Logan, and H. Krishnamurthy, ibid.
94, 186406 (2005).

[17] M.-S. Choi, R. López, and R. Aguado, Physical review
letters 95, 067204 (2005).

[18] F. B. Anders, D. E. Logan, M. R. Galpin, and G. Finkel-
stein, Physical review letters 100, 086809 (2008).

[19] P. Nozieres and A. Blandin, Journal de Physique 41, 193
(1980).

[20] I. Affleck and A. W. Ludwig, Physical Review Letters 67,
161 (1991).

[21] I. Affleck and A. W. Ludwig, Physical Review B 48, 7297
(1993).

[22] Y. Oreg and D. Goldhaber-Gordon, Physical review let-
ters 90, 136602 (2003).

[23] A. Furusaki and K. Matveev, Physical Review B 52,
16676 (1995).

[24] K. Matveev, Physical Review B 51, 1743 (1995).
[25] R. Potok, I. Rau, H. Shtrikman, Y. Oreg, and

D. Goldhaber-Gordon, Nature 446, 167 (2007).
[26] A. Keller, L. Peeters, C. Moca, I. Weymann, D. Mahalu,

V. Umansky, G. Zaránd, and D. Goldhaber-Gordon, Na-
ture 526, 237 (2015).

[27] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. Par-
mentier, A. Cavanna, and F. Pierre, Nature 526, 233
(2015).

[28] Z. Iftikhar, A. Anthore, A. Mitchell, F. Parmentier,
U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Si-
mon, and F. Pierre, Science 360, 1315 (2018).

[29] A. K. Mitchell, L. Landau, L. Fritz, and E. Sela, Physical
review letters 116, 157202 (2016).

[30] L. A. Landau, E. Cornfeld, and E. Sela, Physical review
letters 120, 186801 (2018).

[31] T. Nguyen and M. Kiselev, Physical Review Letters 125,
026801 (2020).

[32] D. Karki and M. N. Kiselev, Physical Review B 102,
241402 (2020).

[33] G. A. van Dalum, A. K. Mitchell, and L. Fritz, Phys-
ical Review B 102, 041111R (2020); G. van Dalum,
A. Mitchell, and L. Fritz, ibid. 102, 205137 (2020).

[34] J.-Y. M. Lee, C. Han, and H.-S. Sim, Physical Review
Letters 125, 196802 (2020).

[35] K. Le Hur and P. Simon, Physical Review B 67, 201308
(2003).

[36] I. Affleck, Nuclear Physics B 336, 517 (1990).
[37] I. Affleck and A. W. Ludwig, Nuclear Physics B 360, 641

(1991).
[38] I. Affleck, arXiv preprint cond-mat/9512099 (1995).
[39] V. Emery and S. Kivelson, Physical Review B 46, 10812



6

(1992).
[40] K. G. Wilson, Reviews of modern physics 47, 773 (1975);

R. Bulla, T. A. Costi, and T. Pruschke, Reviews of Mod-
ern Physics 80, 395 (2008).

[41] A. K. Mitchell, M. R. Galpin, S. Wilson-Fletcher, D. E.
Logan, and R. Bulla, Physical Review B 89, 121105
(2014); K. Stadler, A. Mitchell, J. von Delft, and A. We-
ichselbaum, ibid. 93, 235101 (2016).

[42] F. B. Anders, E. Lebanon, and A. Schiller, Physical Re-
view B 70, 201306 (2004).

[43] See Supplemental Material for (i) additional NRG data;
(ii) details of NRG and conductance calculations; (iii)
further information on the CFT treatment and Emery-
Kivelson mapping. Additional references [55–58] are con-
tained therein.

[44] I. Affleck, A. W. Ludwig, H.-B. Pang, and D. Cox, Phys-
ical Review B 45, 7918 (1992).

[45] K. Le Hur, P. Simon, and L. Borda, Physical Review B
69, 045326 (2004).

[46] See Eq. 17 in Ref. 45.
[47] See Eq. 20 in Ref. 45 with V⊥ = Qz = 0.
[48] H. Georgi, Lie algebras in particle physics: from isospin

to unified theories (CRC Press, 2018).
[49] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal

field theory (Springer Science & Business Media, 2012).
[50] M. Pustilnik, L. Borda, L. Glazman, and J. Von Delft,

Physical Review B 69, 115316 (2004).
[51] E. Sela, A. K. Mitchell, and L. Fritz, Physical review

letters 106, 147202 (2011).
[52] A. K. Mitchell and E. Sela, Physical Review B 85, 235127

(2012).
[53] J. Von Delft and H. Schoeller, Annalen der Physik 7, 225

(1998).
[54] A. Liberman, A. K. Mitchell, I. Affleck and E. Sela, in

preparation.
[55] A. Weichselbaum and J. von Delft, Physical review letters

99, 076402 (2007).
[56] Y. Meir and N. S. Wingreen, Physical review letters 68,

2512 (1992).
[57] A. K. Mitchell, E. Sela, and D. E. Logan, Physical review

letters 108, 086405 (2012).
[58] J. Ye, Physical Review B 56, R489 (1997).


