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Coherent optical states consist of a quantum superposition of different photon number (Fock)
states, but because they do not form an orthogonal basis, no photon number states can be obtained
from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous
single-photon stream using quantum interference in an optical Sagnac loop, we create engineered
quantum states of light with tunable photon statistics, including approximate weak coherent states.
We demonstrate this experimentally using a true single-photon stream produced by a semiconductor
quantum dot in an optical microcavity, and show that we can obtain light with g(2)(0) → 1 in
agreement with our theory, which can only be explained by quantum interference of at least 3
photons. The produced artificial light states are, however, much more complex than coherent
states, containing quantum entanglement of photons, making them a resource for multi-photon
entanglement.

Coherent states of light are considered to be the most
classical form of light, but expressed in photon number
(Fock) space, they consist of a complex superposition of
a number of photon number (Fock) states. Because co-
herent states are non-orthogonal, it is not possible with
linear-optical manipulation and superposition of coher-
ent states to obtain pure photon number (Fock) states.
The opposite is possible in principle, for instance by at-
tenuating high-N photon number states one could syn-
thesize coherent states. However, high-N Fock states are
not readily available, but recently high-quality sources
of single-photon (N = 1) states became accessible based
on optical nonlinearities on the single-photon level. In
particular, by using semiconductor quantum dots in op-
tical microcavities [1], single-photon sources with high
brightness, purity, and photon indistinguishability were
realized [2–5]. Under loss, in contrast to higher-N Fock
states, single-photon streams never loose their quantum
character since single photons cannot be split, loss re-
duces only the brightness. Single photons are an impor-
tant resource for quantum information applications [6].
In order to synthesize more complex quantum states
of light, multiple identical single-photon streams can
be combined using beamsplitters, where unavoidably
quantum interference appears, the well-known Hong-Ou-
Mandel (HOM) effect [7]. This effect leads to photon
bunching if the incident photons are indistinguishable,
therefore enables the production of higher photon num-
ber states but only probabilistically. HOM interference
is also used for characterization of the photon indistin-
guishability of single-photon sources [1], which is done
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mostly in the pulsed regime where detector time resolu-
tion is not an issue. The regime of a continuous but ran-
dom stream of single photons has been explored much
less in this aspect, HOM interference with continuous
random stream of true single photons has been observed
in Refs. [8] and [9]. The HOM effect can also be used
to entangle photons; in combination with single-photon
detection and post-selection, it also can act as a proba-
bilistic CNOT gate [6, 10, 11].

Here we make use of HOM interference in a Sagnac-type
delay loop with a polarizing beamsplitter (Fig. 1), where
HOM interference happens at a half-wave plate in polar-
ization space [12]. Similar setups are proposed for boson
sampling [13, 14] and used for producing linear photonic
cluster states [15–17], an emerging resource for univer-
sal quantum computation [6, 18, 19]. Since we operate
with a random but continuous single-photon stream, the
repeated quantum interference and enlargement of the
spatio-temporal superposition leads to an infinitely long
quantum superposition. By tuning the photon indistin-
guishability we observe, in agreement with our theoreti-
cal model, photon correlations approaching that of coher-
ent light (g(2)(0) → 1), and from our theoretical model,
we deduce that the photon number distribution indeed
corresponds to coherent light, more precisely weak co-
herent light with a mean photon number n̄ ≈ 0.2.

Experimentally, as an efficient single-photon source, we
use a self-assembled InGaAs/GaAs quantum dot (QD)
embedded in polarization-split micropillar cavity grown
by molecular beam epitaxy [5, 20]. The QD layer is em-
bedded in a p-i-n junction, separated by a 27 nm-thick
tunnel barrier from the electron reservoir, to enable tun-
ing of the QD resonance around 935 nm by the quantum-
confined Stark effect. The QD transition with a cavity-
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enhanced lifetime of τr = 130 ± 15 ps is resonantly ex-
cited with a continuous-wave laser, which is separated by
a cross-polarization scheme [20] from the single photons
that are collected in a single-mode fiber. This linearly
(H) polarized single-photon stream Ψin is then brought
by WP1 (22.5◦) in a superposition of two polarization
modes; H-polarized photons enter the 1 m long free-space
delay-loop wherein WP2 (22.5◦) brings them again in a
superposition, only H-polarized photons are transmitted
from the loop towards the detection part. Detection is
done with a standard Hanbury Brown and Twiss (HBT)
setup with a non-polarizing beamsplitter, after which the
photons are coupled into multi-mode fibers (coupling ef-
ficiency ∼ 90%) and detected with silicon avalanche pho-
ton detectors (APDs, 25% efficiency) and analyzed with
a time-correlated single-photon counting computer card.
With motorized half-wave plates followed by a fixed lin-
ear polarizer before each multi-mode fiber coupler, the
setup allows to distinguish correlations between photons
from the loop (g(2)

HH(τ)), only directly from the source
(g(2)
V V (τ)), and to analyze cross-correlations between pho-

tons from the loop and source g(2)
V H(τ). Note that mea-

surement in V V polarization is equivalent to a standard
g(2)(τ) measurement of the single-photon source and can
be used to obtain a reference without changing the ex-
perimental setup. We have chosen a beam waist of 0.50
mm inside the loop in order to reduce diffraction loss;
the total round-trip transmission ηL is ∼ 90%. Further,
we use active phase-stabilization of the loop length by
using a mirror on a piezoelectric actuator (Fig. 1(b))
and a frequency-stabilized He-Ne laser entering the loop
through a doubly polished mirror, this is needed because
weak pure single-photon states interfere phase-sensitively
[21].
We operate the QD single-photon source with relatively
high excitation power (∼ 50 nW) to obtain a bright
single-photon stream (detected single-photon detection
rate of 200 kHz), with the consequence that unwanted
effects produce a broad correlation peak superimposed
to g(2)(τ). In order to correctly take this into account in
our model, we first measure in V V detector configuration
the source correlations (Fig. 2(a)) and model it using a
three-level system [22, 23], where τB is the lifetime of the
additional dark state:

g
(2)
3L (τ) = 1− (1 +a) exp(−|τ |/τr) +a exp(−|τ |/τB). (1)

Further, for comparison to experimental results with ex-
pected g(2)(0) below 0.1 [5], the theoretical data are
convolved with a Gaussian instrument response function
(IRF) of our single-photon detectors with FWHM =
0.523 ns [24], limiting the smallest detectable g(2)(0) ≈
0.63. From fitting the model to the experimental data,
we obtain a bunching strength a = 0.24 ± 0.03 and
τB = 5.2±0.3 ns, similar time scales were observed before
[25].
To start building up a theoretical model and to charac-
terize the delay loop, we now measure in V H detection
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Figure 1. Experimental setup - (a) Photons from the single-
photon source (SPS) are diagonally polarized by WP1 before
sent to the loop setup consisting of a polarizing beamsplitter
and half-wave plate WP2 at 22.5◦. Light from the loop setup
is analyzed with the polarization-resolved HBT setup. Panel
(b) shows the interferometric loop length stabilization.

configuration the cross-correlation function between pho-
tons directly from source and photons from the delay loop
g

(2)
V H(τ), shown in Fig. 2(b). The V detector is connected
to the start trigger input of a correlation card and the H
detector to the stop channel, therefore the measured cor-
relation g(2)

V H(τ) is as expected asymmetric around τ = 0.
Considering an H-polarized photon entering the loop,
WP2 transforms it into an 1√

2 (|H〉+ |V 〉) diagonally po-
larized state. The H-polarized part of the state leaves
the loop via the polarizing beamsplitter, while the V
part remains in the loop and is transformed by WP2 into
1√
2 (|H〉 − |V 〉), this process is repeating itself infinitely.

In the case of a limited amount of photons in well-defined
time bins, the output can easily be described, the chance
that a photon leaves the loop after r round trips is (ηL/2)r
[26]. In our case of a random single-photon stream, the
case is more complex as we describe the light stream by
correlation functions which we also measure experimen-
tally. In order to predict g(2)

V H(τ) theoretically, we use
as an approximation that maximally two photons are in
the system, which we prove later to be appropriate here.
We obtain for the detected state for two incident pho-
tons with delay ∆t 6= 0 (it is a single-photon source) a
weighted superposition of single-photon streams shifted
by time r ·R, where r is the round-trip number and R the
round-trip delay (see Supplemental Information [27]):

|ΨV H〉 =
∑

∆t6=0

V †

√ηL
2 H†R+∆t +

∑
r≥2

(
−
√
ηL
2

)r
H†r·R+∆t

 |0〉.
(2)

The state is written in terms of photon creation operators
V †t and H†t , where the polarization mode is represented
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Figure 2. Characterization of the single-photon source (a) and
loop setup (b), experimental data has been accumulated over
3 hours; solid lines show the model calculations. In (a) the
three-level model is fitted to the experimental g(2)

V V (τ) data
to obtain the single-photon source and detector parameters
used throughout the paper. Panel (b) shows V H correlations
between photons directly from the source and from the loop,
confirming the validity of our model.

by the capital letter, the detection time is given in the
subscript. Assuming a source continuously emitting per-
fect single photons, we can derive from the two-photon
state an analytical expression for g(2)

V H(τ):

g
(2)
V H(τ) = 1−

∑
m>0

(ηL
2

)m (
1− g(2)

3L (τ −m ·R)
)
. (3)

Here, photons with ∆t = z · R, z ∈ Z are correlated
by the loop and create dips in g

(2)
V H(τ) for τ = m · R

where m ∈ N iterates over round-trips. We observe good
agreement between theory and experimental data in Fig.
2(b). Note that also the shifted broad peak originating
from strong driving is correctly reproduced.

Finally, we investigate the correlations of photons emerg-
ing from the loop by measuring g(2)

HH(τ), shown in Fig. 3.
We find that g(2)

HH(τ = 0) is now highly sensitive to the
indistinguishability or wave function overlap M of con-
secutive photons produced by the quantum dot, which we
can tune experimentally simply by changing the spatial
alignment of the delay loop. Assuming a perfect single-
photon source, the wave function overlap M is equal to
the interferometric visibility V , see the Supplemental sec-
tion C for details [27]. The model for the case of distin-
guishable photons, shown in Fig. 3(a), can be calculated
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Figure 3. Photon correlations g(2)
HH(τ) (symbols) for mis-

aligned loop (a, V ≈ 0.03, distinguishable photons) and
aligned loop (b, V ≈ 0.9, indistinguishable photons) com-
pared to the model predictions (blue curves). Raw coinci-
dence counts corresponding to g(2)

HH(τ) = 1 were 880 (a) and
9700 (b). The green curves show the model results for the
case without spectral diffusion.

again in the two-photon picture [27], and we obtain

g
(2)
HH(τ) =1− 2ηL

4− η2
L

∑
m∈Z\{0}

(ηL
2

)|m| (
1− g(2)

3L (τ −m ·R)
)

−
(

1− g(2)
HH(0)

)(
1− g(2)

3L (τ)
)
,

(4)
where the value of g(2)

HH(0) has to be calculated using full
quantum state propagation which we describe now.
The delay loop leads to quantum interference of photons
at different times in the incident single-photon stream,
and HOM photon bunching occurring at WP2 produces
higher photon number states in a complex quantum su-
perposition. We have developed a computer algorithm
that can simulate g(2)

HH(0), see the Supplemental Informa-
tion section B for details [27]. For the results shown here,
we take up to 20 photons or loop iterations into account
to approximate the experiment with a continuous pho-
ton stream. For completely distinguishable photons we
obtain g

(2)
HH(0) = 0.49 (corrected for dark state dynam-

ics), which agrees well with the experimentally observed
correlations in Fig. 3(a).
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dark state dynamics, compared to our theoretical expecta-
tions (blue line, convolved with IRF) as a function of the pho-
ton indistinguishability or wave-function overlap, expressed
by the visibility V . Light with coherent photon statistics is
obtained for V → 1. The green line shows the expected results
for detectors with perfect timing resolution. Results include
a fixed round-trip loss of 0.1.

For the case of indistinguishable photons with maximal
wave-function overlap M ≈ 0.9, we observe in Fig. 3(b)
that the dip at τ = 0 almost disappears. This is be-
cause the (multi-)photon bunching increases the weight
of higher photon number states, and, as we show now,
produces quasi-coherent states of light with g(2)(0) ≈ 1.

Based on our computer simulation, we investigate the
photon number distribution P (n), which is shown in Fig.
4. We see very good agreement of the artificial coherent
state (indistinguishable photons, M = 1, experimentally
we achieveM = 0.9) to an exact weak coherent light state
with the same mean photon number (n̄ = 0.2). In the
Supplemental Information [27] Section E we show that
the artificial coherent state is also very close to being
an eigenstate of the annihilation operator, as expected.
Now, using the full simulated quantum state, we calcu-
late the quantum fidelity F to the exact coherent state
and obtain 1− F ≈ 10−3 for both M = 1 and M = 0.9.
We also calculate the l1-norm of coherence [28] Cl1 , also
here the deviation from the exact coherent state is very
small, smaller than 10−3 relatively. From comparison of
the density matrices [27], we see that deviations occur
mainly in the higher photon number components, those
are weak and do not contribute much to the aforemen-
tioned measures. These small deviations are also visible
in the Wigner function of the artificial coherent state [27].
In the model, we can ignore a round-trip dependent de-
crease of M due to beam diffraction since the effect is
only ∼ 2%, see Supplemental section B2, and from Fig.
4 we also see why it was justified above to ignore N > 2
states for prediction of g(2)

V H(τ) and g
(2)
HH(τ 6= 0), their

contribution is negligible (Supplemental section D [27]).
In our experiment, we can also observe the transition to
an artificial coherent state by tuning the photon indis-
tinguishability M to intermediate values, which is shown
in Fig. 5, again in good agreement with our model.
Compared to a weak thermal state of light which can
be produced by spontaneous emission of many single-
photon emitters coupled to the same cavity mode [29],
although having similar P (n) for low n̄, as shown in
Fig. 4, g(2)(0) would show a peak which is not the
case here. The simple characterization method based
only on two-photon correlations measurement presented
here could also be useful for characterization of photonic
cluster states demonstrated recently [16, 17]. In order
to determine how many photons are contributing to the
quasi-coherent states here, by comparing our experimen-
tal results to a photon-truncated theoretical model, we
see that at least 3 photons are needed to explain our re-
sults. We estimate that these three-photon states occur
with a rate of about 5 kHz in our experiment [27].
In conclusion, we have shown approximate synthesis of
continuous-wave coherent states of light from a quan-
tum dot-based single-photon source, using a simple op-
tical setup with a free-space delay loop. The underlying
mechanism is repetitive single-photon addition [30–32] to
an ever-growing number-state superposition, and can be
tuned by changing photon distinguishability. A differ-
ence of the artificial coherent states here to conventional
coherent light is that the photons of the artificial coher-
ent state are correlated with others separated by multi-
ples of the loop delay, this is typical for systems with
time-delayed feedback [33] including lasers [34, 35]. This
quantum entanglement becomes accessible if an ordered
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(pulsed) stream of single photons is used, and enables
production of linear cluster states which has been real-
ized recently [16, 17], and feed-forward or fast modulators
[14, 36–38] can be used to produce even more complex
quantum states. We want to add that also lasers produce
only approximately coherent states with entanglement
of the stimulated photons via the gain medium [39–42]
which is in practice inaccessible due to the impossibility
of monitoring every quantum interaction in the system
[43]. From this quantum entanglement arises complexity,
therefore we had to use algorithmic modelling in order to
produce a theoretical prediction of the output state; this
is not surprising because it is known to be computation-
ally hard to calculate quantum interference with many
beamsplitters (including loop setups such as the one in-
vestigated here) and many photons in Fock states, possi-
bly lying beyond the P complexity class [13, 44]. It would
be an interesting goal to develop rigorous entanglement
(length) witnesses that can also be applied to continuous
and random photon streams such as here, explore possi-
bilities for time-bin encoded tensor networks [45, 46] or
quantum metrology [47], or to entangle the photons in a
d > 1-dimensional topology [48, 49]. A natural question
is if other quantum states of light, in particular quadra-
ture squeezed light, can be produced in a similar way,
unfortunately, those light states are not resilient against
loss compared to coherent states, rendering this far more
challenging.
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