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Three-body decay is a rare decay mode observed in a handful of unbound rare isotopes. The
angular and energy correlations between emitted nucleons are of particular interest, as they provide
invaluable information on the interplay between structure and reaction aspects of the nuclear open
quantum system. To study the mechanism of two-nucleon emission, we developed a time-dependent
approach that allows us to probe emitted nucleons at long times and large distances. We successfully
benchmarked the new method against the Green’s function approach and applied it to low-energy
two-proton and two-neutron decays. In particular, we studied the interplay between initial-state
nucleon-nucleon correlations and final-state interaction. We demonstrated that the time evolution
of the two-nucleon wave function is strongly impacted by the diproton/dineutron dynamics and that
the correlations between emitted nucleons provide invaluable information on the dinucleon structure
in the initial-state.

Introduction.—The nucleus is a unique laboratory of
quantum many-body physics. Its fermionic building
blocks, the positively-charged proton and the neutral
neutron, are almost identical in all aspects, except for
the electric charge. This is a consequence of the isospin
symmetry [1, 2]. The symmetry is weakly broken in
atomic nuclei, primarily by the long-range Coulomb in-
teraction. The spectroscopy of mirror nuclei, which have
their proton number and neutron number exchanged, of-
fers many examples of isospin-symmetry violation. Im-
portant, complementary information on the interplay be-
tween the nuclear and electromagnetic force comes from
decay studies, including two-proton (2p) and two-neutron
(2n) radioactivity [3–5]. In this respect, particularly
valuable is the information on the angular and energy
correlations between emitted nucleons, which reflect the
interplay between structure and reaction aspects of the
nuclear open quantum system [6]. A more general per-
spective on two-nucleon decays is offered by its relevance
to quantum entanglement [7].

A handful of ground state (g.s.) 2p emitters have been
discovered [4, 5]. In the case of the g.s. 2n decay, the only
candidate identified so far is the threshold resonance in
26O [8–10]. Theoretically, the mechanism of two-nucleon
emission is not fully understood, including the role of the
low-lying particle continuum, and the transition from the
initial state strongly impacted by the nuclear medium to
the scattering domain governed by final-state interaction
[11–13]. In this Letter we study the two-nucleon decay
process in a time-dependent framework to address this
question.

At the initial stage of the two-particle decay process,
the emitted nucleons are highly correlated due to the
presence of nucleonic pairing. In particular, due to the
low-lying particle continuum, the correlated nucleonic
pairs in the surface region of superfluid weakly bound
nuclei (often referred to as di-nucleons) are believed to
be spatially compact [14–18].

The majority of theoretical models of two-nucleon ra-
dioactivity – such as the WKB approach [19, 20], R-
matrix theory [21, 22], and the three-body reaction model
of Refs. [23, 24] – treat internal and asymptotic regions
separately. Except for the three-body models, these ap-
proaches are based on the assumption that the inner nu-
clear structure could be preserved during the course of
tunneling. Since the dinucleon is unstable, this suppo-
sition is unlikely to hold. To describe two-nucleon de-
cay comprehensively, in our previous work [25, 26], we
introduced the Gamow coupled-channel (GCC) method,
which is capable of describing structure and decay as-
pects of unbound three-body systems within one frame-
work. However, to model angular and energy correlations
of emitted particles, precise three-body solutions at very
large distances are required, and this poses a formidable
challenge, especially in the presence of the long-range
Coulomb interaction.

An alternative strategy of tackling the decay process
is a time-dependent formalism, which allows to address
a broad range of questions – such as configuration evo-
lution [27], decaying rate [28], and fission [29] – in a pre-
cise, numerically stable, and transparent way. In the case
of two-nucleon decay, the measured inter-particle corre-
lations can be interpreted in terms of solutions propa-
gated for long times. An approximate treatment of 2p
emission was proposed in Ref. [30], in which the center-
of-mass motion for the two-protons was described classi-
cally. In Refs. [31, 32], an early stage of the two-proton
emission from the g.s. of 6Be was investigated using a
time-dependent method. However, their method is not
able to capture the asymptotic dynamics and resulting
proton-proton (pp) correlations. To this end, we have
developed a realistic time-dependent approach to investi-
gate the general properties and unique features of 2p and
2n radioactivity. Our method provides precise solutions
at very large distances (over 500 fm) and long times (up
to 30 pm/c) that allows analysis of asymptotic observ-
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ables in order to compare them with measurements.
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FIG. 1. (a) Jacobi T (solid lines) and Y (dashed lines) coor-
dinates for a core+nucleon+nucleon system and (b) the cor-
responding momentum scheme. A is the mass number, and
µij is the reduced mass of clusters i and j. k1, k2 and kc
are the momenta of the nucleons n1 and n2 and the core c,
respectively in the center-of-mass (c.m.) coordinate frame.

Theoretical approach.—A two-nucleon emitter can be
viewed as a three-body system: a core (c) representing
the daughter nucleus and two emitted nucleons (n1 and
n2). The i-th cluster (i = c, n1, n2) has the position
vector ri and linear momentum ki. The corresponding
Hamiltonian can be written as:

Ĥ =
∑
i

p̂2
i

2mi
+
∑
i>j

V̂ij(rij)− T̂c.m., (1)

where V̂ij represents the two-body interaction between

the constituent clusters and T̂c.m. stands for the center-
of-mass term.

In order to describe three-body asymptotics and to
eliminate the spurious center-of-mass (c.m.) motion, it is
convenient to build the total wave function ΨJπ in the rel-
ative (Jacobi) coordinates (see Fig. 1 and Supplemental
Material (SM) [33]) using the hyperspherical-harmonics
expansion. To obtain the initial resonance state ΨJπ

0

at t = 0, we take advantage of the GCC framework
and extend the Schrödinger equation into the complex-
momentum k̃ space by utilizing the Berggren expansion
[25, 34, 35]. The Berggren basis includes resonant and
scattering states; hence, it effectively allows the treat-
ment of nuclear structure and reactions. Such a Jacobi-
Berggren approach describes decay properties of outgo-
ing valence nucleons and prevents the reflection of the
wave function at the boundary. This offers a significant
advantage over the use of the cluster-orbital-shell-model
coordinates [36] used in the standard Gamow Shell Model
applications [35], and the use of absorbing boundary con-
dition as in Refs. [31, 32, 37]. The Pauli-forbidden states
occupied by the core nucleons are eliminated through the
supersymmetric transformation method [38], which pre-
serves the phase and spectral equivalence.

The complex-momentum state ΨJπ
0 obtained with the

GCC method can be decomposed into real-momentum
scattering states using the Fourier–Bessel series expan-
sion in the real-energy Hilbert space [39]. The resulting

wave packet is propagated by the time evolution operator
through the Chebyshev expansion [40, 41]:

e−i
Ĥ
~ t =

∞∑
n=0

(−i)n (2− δn0) Jn(t)Tn(Ĥ/~), (2)

where Jn are the Bessel functions of the first kind and
Tn are the Chebyshev polynomials. We limit the time
evolution to the real momentum space; this restores the
Hermitian property of the Hamiltonian matrix and guar-
antees the conservation of the total density. Since our
realization of the time-dependent approach is based on
the integral equation, and since the Chebyshev expan-
sion has a good convergence rate, the numerical precision
can be well controlled to maintain high accuracy [41, 42].
Moreover, since the evolving wave packet has an implicit
cutoff at large distances, the divergence of the Coulomb
interaction in the momentum space is avoided. In prac-
tice, we only consider the interactions inside the sphere
of radius 500 fm, but the wave function is still defined in
the momentum space beyond this cutoff. In this way, the
unwanted reflection at the boundary is avoided.

Hamiltonian and model parameters.— The three-body
configurations in the Jacobi coordinates are labeled by
quantum numbers (K, `x, `y, S), where K is the hyper-
spherical quantum number, `x is the orbital angular
momentum of the proton (neutron) pair with respect
to their center of mass, `y is the pair’s orbital angu-
lar momentum with respect to the core, and S is the
total intrinsic-spin of the emitted nucleons. The cal-
culations were carried out in a model space defined by
max(`x, `y) ≤ 7 and for a maximal hyperspherical quan-
tum numberKmax = 50. In the hyperradial part, we used
the Berggren basis for the K ≤ 10 channels and the har-
monic oscillator basis with the oscillator length of 1.75 fm
and Nmax = 20 for the remaining channels. For the GCC
calculation of the initial state, the complex-momentum
contour defining the Berggren basis is given by the path:
k̃ = 0 → 0.3 − 0.15i → 0.5 − 0.12i → 1 → 2 → 4
(all in fm−1). As a result, the initial state used in our
time-dependent calculations is a resonance with a com-
plex energy. The imaginary part of the energy, related
to the decay width, represents the energy uncertainty of
the wave packet. For the time-dependent calculation,
the inner part (< 15 fm) of the initial state is expanded
and propagated with a real-momentum contour, which is
k = 0 → 0.25 → 0.5 → 1 → 2 → 4 (all in fm−1). Each
segment is discretized with 100 scattering states.

In this work, we consider the 2p/2n decays from a mir-
ror pair 6

4Be2−6
2He4. Our aim is not to provide a detailed

description of the actual experimental data (for this,
one would need a fine-tuned Hamiltonian) but rather
to demonstrate the high precision of time-dependent so-
lutions and explore the unique generic features of two-
nucleon decays. The interaction between the valence nu-
cleons is represented by the finite-range Minnesota force
with the original parameters of Ref. [43], which is supple-
mented by the two-body Coulomb force for protons. The
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effective core-nucleon interaction has been taken in the
form of a Woods-Saxon potential (with spin-orbit term)
and a one-body Coulomb interaction. Except for the
potential depth V0, the parameters of the Woods-Saxon
potential are taken from Ref. [25]. For the g.s. of 6Be,
the depth V0 has been readjusted to reproduce the exper-
imental decay energy [44, 45] (Q2p = 1.372 MeV). Since
the g.s. of 6He is bound with respect to 2n decay, to study
the properties of 2n decays at long times/distances, by
readjusting V0 we artificially created an unbound g.s. of
6He with Q2n = 1 MeV, referred to as 6He′ in the follow-
ing. The calculated two-nucleon decay widths are 64 keV
and 241 keV for 6Be and 6He′, respectively.

To benchmark our time-dependent approach, we car-
ried out time propagation using Green’s function Ĝ =
(E− Ĥ + iη)−1. The corresponding time evolution oper-
ator can be written as the Fourier transform of Ĝ:

e−i
Ĥ
~ t =

e
η
~ t

2πi
F
(
Ĝ, E → t

2π~

)
. (3)

We adopt the Berggren basis expansion with the “off-
diagonal method” [46] to avoid the singularities stem-
ming from the denominator of Green’s function and the
integration of Coulomb interaction in the asymptotic re-
gion [47, 48].

Different dynamics of 2p and 2n decays.—For the light
2p emitters, both direct and sequential decays are pos-
sible [5, 49]. The decay of 6Be represents one of such
cases [50]. Here, the neighboring g.s. of 5Li is a broad
resonance with a proton decay width of Γ = 1.23 MeV.
The three-body decay of 6Be is not completely under-
stood [4, 5, 21, 23, 51–54]. Indeed, the diproton struc-
ture predicted by theory and the measured broad angular
correlation of the emitted protons have been viewed as
self-contradictory. Figure 2a,b shows the calculated evo-
lution of the 2p density and momentum distribution for
the g.s. of 6Be over a broad time range. At the begin-
ning (t = 0) when the wave function is fairly localized
inside the nucleus, the density distribution shows two
maxima for 6Be associated with diproton/cigarlike con-
figuration characterized by small/large relative distance
between valence protons. (For a better visualization of
the initial 2p wave function, see Ref. [55].) During the
early stage of the decay, two strong flux branches dom-
inate, see Fig. 2b. The primary branch corresponds to
the protons being emitted at small opening angles, which
indicates that a diproton structure is present during the
tunneling phase. This can be understood in terms of the
nucleonic pairing, which favors low angular momentum
amplitudes and hence lowers the centrifugal barrier and
increases the 2p tunneling probability [31, 32, 52, 55].
The secondary branch corresponds to protons emitted
in opposite directions. While they are spatially apart,
these protons seem to be correlated and decay simulta-
neously according to their similar proton-core distances;
this nicely reveals a three-body nature of the process.

After tunneling through the Coulomb barrier, the two
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FIG. 2. The density and momentum distributions of two-
nucleon decays from the g.s. of 6Be (left) and 6He′ (right) for
four different time slices. The density distributions are shown
in the Jacobi-T coordinates (see Fig. 1 and SM [33]). The
momentum distribution of the second nucleon is shown with
respect to the momentum of the first nucleon. To show the
asymptotic wave function clearly, all the particle densities (in
fm−1) are multiplied by the polar Jacobi coordinate ρ. The
dimensionless momentum (angular) distributions are divided
by the total momentum k.

emitted protons tend to gradually separate due to the
Coulomb repulsion. This is reflected in the bent trajec-
tory of the diproton decay branch and the gradual reduc-
tion of the momentum alignment seen in Fig. 2a,b. Even-
tually, the 2p density becomes spatially diffuse, which is
consistent with the broad angular distribution measured
in Ref. [53]. One may notice that even beyond 100 fm
(at t ≈ 2 pm/c), the Coulomb repulsion tends to reduce
the inter-proton correlation. According to our calcula-
tions, the angular correlation starts to stabilize only after
very long times greater than 9 pm/c. Therefore, in order
to make meaningful estimates of asymptotic observables,
very long propagation times are indeed required.

The mirror partner of 6Be is the 2n halo system
6He. To study the nuclear-Coulomb interplay in the two-
nucleon decay, we study the artificially-unbound 6He′. As
seen in Fig. 2, at small times the density of 6He′ looks
similar to that of 6Be due to the isospin symmetry of
nuclear force. However, since the Coulomb repulsion is
absent in the 6He′ case, the dineutron decay branch is
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FIG. 3. Asymptotic energy (left) and angular (right) correla-
tions of emitted nucleons from the g.s. of 6Be (top) and 6He′

(bottom) calculated at t = 15 pm/c with different strengths of
the Minnesota interaction [43]: standard (solid line), strong
(increased by 50%; dashed line), and weak (decreased by 50%;
dash-dotted line). Also shown are the benchmarking results
obtained within Green’s function method (GF; dotted line)
using the standard interaction strength. θk is the opening
angle between kx and k1 in the Jacobi-Y coordinate system,
and Epp/nn is the kinetic energy of the relative motion of the
emitted nucleons (see Fig. 1 for definitions).

more pronounced as the emitted neutrons keep main-
taining their spatial correlations in time. As a result,
the asymptotic nucleon-nucleon correlations displayed in
Fig. 3 are quite different between 6Be and 6He′.

To illustrate our benchmarking procedure, Fig. 3 shows
the comparison between our time-dependent approach
and the Green’s function method. Both techniques pro-
duce results that are practically identical.
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FIG. 4. Time evolution of the wave functions of 6Be. Config-
urations are labeled as (K, `x, `y, S) in Jacobi-T coordinates.
The projected contour map represents the sum of all the con-
figurations in momentum space; the interference frequencies
are marked by dotted lines corresponding to different n-values.

Impact of nucleon-nucleon interaction on correlations
between emitted nucleons.– To gain more insight into the
interplay between the initial-state and final-state inter-
actions, we studied the decay properties of 6Be and 6He′

as a function of the nucleon-nucleon Minnesota interac-

tion strength Vpp/nn. As shown in Fig. 3 and SM [33],
the attractive nuclear force is not only responsible for
the presence of correlated dinucleons in the initial state,
but it also significantly impacts asymptotic energy corre-
lations and angular correlations in the Jacobi-Y angle θk.
This indicates that, even though the initial-state correla-
tions are largely lost in the final state, some fingerprints
of the dinucleon structure can still manifest themselves
in the asymptotic observables. Interestingly, the asymp-
totic angular correlations in the Jacobi-T angle θ′k hardly
depend on Vpp/nn [33]. This suggests that this observable
is not particularly useful when assessing nucleon-nucleon
correlations in the initial state.

By comparing correlation results for 6Be and 6He′ in
Fig. 3 one can assess the role of Coulomb interaction
in the 2p decay. One can see that the energy correla-
tions are rather similar for both nuclei. This is certainly
not the case for the angular correlations: their patterns
are markedly different, independent of the interaction
strength Vpp/nn.

Evolution of two-nucleon wave function.–Figure 4 illus-
trates the propagation of the wave function of 6Be. At
t = 0, the g.s wave function shows a broad momentum
distribution that is indicative of spatial localization. At
long times, the emitted nucleons move with the well-
defined total momentum shown by a narrow resonance
peak corresponding to the resonance’s energy [56]. The
gradual transition from the broad to narrow momentum
distribution exhibits a pronounced interference pattern,
which is universal for two-nucleon decays. The interfer-
ence frequencies, shown by dotted lines in Fig. 4, can be

approximated by ( ~2

2mk
2 −Q2p/2n)t = nπ~, where n = 1,

3, 5 · · · , i.e., they explicitly depend on the Q2p/2n energy
(see SM [33] for details).

Interestingly, the configuration evolution also reveals
a unique feature of three-body decay. As seen in Fig. 4,
the initial g.s. of 6Be is dominated by the p-wave (` = 1)
components, and the small s-wave (` = 0) component
comes from the non-resonant continuum. As the system
evolves, the weight of the s-wave component – approxi-
mately corresponding to the Jacobi T-coordinate configu-
ration (K, `x, `y, S) = (0,0,0,0) – gradually increases and
eventually dominates because it experiences no centrifu-
gal barrier. Such a behavior can never happen in the
single-nucleon decay due to the conservation of orbital
angular momentum but is present for the two-nucleon de-
cay as a correlated di-nucleon involves components with
different `-values [14, 18, 57, 58]. Moreover, for 2p de-
cays the Coulomb potential and kinetic energy do not
commute in the asymptotic region [23] and this results
in additional configuration mixing.

Summary.—To study the mechanism of two-nucleon
decay, theoretical models must fully control the behavior
of the decaying system at large distances and long propa-
gation times. To this end, we developed a realistic time-
dependent framework that allows for precise three-body
solutions asymptotically. Our calculations demonstrate
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the different dynamics of 2p and 2n decays. The initial-
state pp correlations are largely lost due to the Coulomb
repulsion between escaping protons. We showed that the
energy and angular correlations in the Jacobi-Y angle θk
between emitted nucleons strongly depend on the initial-
state structure.
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