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We study the ground state entanglement of gapped domain walls between topologically ordered
systems in two spatial dimensions. We derive a universal correction to the ground state entanglement
entropy, which is equal to the logarithm of the total quantum dimension of a set of superselection
sectors localized on the domain wall. This expression is derived from the recently proposed entan-
glement bootstrap method.

Topological order is a new kind of order that lies out-
side of Landau’s symmetry breaking paradigm [1]. This
refers to a phase of matter that exhibits exotic phenom-
ena such as topology-dependent ground state degener-
acy [2] and fractional statistics [3, 4]. A systematic un-
derstanding of these phenomena is one of the fundamen-
tal goals in physics. More practically, such systems may
pave ways to build a fault-tolerant quantum computer [5].

When two topologically ordered systems are joined to-
gether along their boundaries, one may obtain a gapped
domain wall between the two [6–8]. Gapped domain
walls can lead to novel phenomena, such as the change
in the ground state degeneracy [6, 9, 10] and the emer-
gence of superselection sectors associated with point-like
excitations that are not uniquely determined by the bulk
data [8, 11].

While there has been a flurry of recent work dedi-
cated to gapped domain walls, one aspect of it remains
unknown. Can we detect gapped domain walls from
ground-state entanglement? In the bulk of topologically
ordered systems, there is a universal correction to the
entanglement entropy over a disk-like region that reveals
nontrivial information about the underlying topological
phase [12, 13], given by the total quantum dimension of
the anyonic excitations. Moreover, codimension-2 defects
give rise to an extra universal correction [14]. However,
whether gapped domain walls give rise to such universal
contribution has remained open. If such a contribution
exists, what would be its physical meaning?

In this letter, we provide a definitive answer to these
questions. Specifically, we study the entanglement en-
tropy – defined as SA = −Tr(σA lnσA) with respect to
a global state σ – over a subsystem A that the domain
wall passes through. Our main finding is that there is a
universal contribution to the entanglement entropy that
reveals nontrivial information about the property of the
domain wall.

To be concrete, consider two topologically ordered
mediums in two spatial dimensions, denoted as P and Q,
that are separated by a domain wall; see Fig. 1. We will
assume that the ground state of this system is well ap-
proximated by a quantum state σ that obeys the assump-

tions we soon describe below. While we expect these as-
sumptions to hold in ground states of gapped systems, at
least approximately, our analysis depends solely on the
assumptions imposed on σ. Therefore, instead of refer-
ring to σ as the ground state, we will refer to it as the
reference state.
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Figure 1. Summary of our assumptions. We assume that
(SC+SBC−SB)σ = 0 (red) and (SBC+SCD−SB−SD)σ = 0
(green), both in the bulk and on the domain wall, over arbi-
trarily large regions that can be smoothly deformed from the
shown configurations. Here (. . .)σ means that the entangle-
ment entropies appearing in the paranthesis is computed with
respect to the reference state σ. The subsystems are allowed
to be deformed as long as the boundaries between B and D
do not cross the domain wall.

The reference state is assumed to obey the assump-
tions summarized in Fig. 1.1 While these assumptions
will generally hold only approximately, in particular, in

1 While the assumptions in Fig. 1 concern arbitrarily large regions,
one can verify these assumptions locally. Specifically, if these
assumptions hold on every ball of bounded radius, they continue
to do so on arbitrarily large scales [15]. Therefore, in principle,
given sufficiently many copies of the quantum state σ, one can
verify this condition directly, in a time that scales merely linearly
with the system size.
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models that are away from a fixed point of a renormaliza-
tion group flow, we believe our conclusion is applicable
to those models as well. The main reason is that the key
technical statements we use rests on a general fact about
tripartite quantum states: that if a tripartite state ρABC
satisfies an entropy identity (SAB+SBC−SB−SABC)ρ =
0, the state has the following Markov chain structure:

ρABC = ΦB→AB [ρBC ] (1)

for some quantum channel ΦB→AB acting on B, which
sends density matrices in B to density matrices in AB.
It is well-known that if the entropy identity holds approx-
imately, i.e., (SAB + SBC − SB − SABC)ρ ≈ 0, then so
does Eq. (1) [16].

Surprisingly, from these seemingly minimalistic as-
sumptions and observations, we can deduce the universal
properties of the underlying quantum phase. Of partic-
ular importance to us is the existence of superselection
sectors called parton sectors [15]. These sectors subdi-
vide the known superselection sectors of the point-like
excitations on the domain wall [8, 11]. Furthermore, they
represent the complete set of topological charges that can
be measured from the N - and U -shaped regions in Fig. 2.
Intuitively, when the red dot in Fig. 2(b) is obtained by
fusing an anyon from the P (Q) phase to the wall, it may
result in a nontrivial N -(U -)type parton sector.

Furthermore, our assumptions allow us to define and
derive an exact expression for the domain wall analog
of the topological entanglement entropy [12, 13]. The
underlying method, which we refer to as entanglement
bootstrap, has recently been initiated and is under devel-
opment in various contexts [15, 17–19].

In this letter, we will focus on the derivation of the do-
main wall topological entanglement entropies, introduced
below. We define two quantities, Stopo,N and Stopo,U ,
which are linear combinations of entanglement entropies
of σ over the subsystems described in Fig. 2(a). We de-
rive the following expressions:

Stopo,N = 2 lnDN ,
Stopo,U = 2 lnDU ,

(2)

where DN and DU are the total quantum dimensions of
the N - and U -type parton sectors:

DN =

√∑
n∈CN

d2
n and DU =

√∑
u∈CU

d2
u. (3)

Here we have denoted the set of N -type (U -type) parton
sectors as CN = {1, n, · · · } (CU = {1, u, · · · }); dn and du
are the quantum dimensions of the parton sectors, which
shall be defined later in Eq. (6).

One can gain intuition about the parton sectors from
some examples. For instance, consider a gapped domain
wall that separates the toric code [5] from a product
state. If we impose the electric boundary condition [6],
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Figure 2. (a) Subsystems involved in the definition of the do-
main wall topological entanglement entropy. (b) Three ways
to detect a point-like excitation (red dot) on the domain wall.
Measurement processes are considered in the blue regions.
The parton sectors can be detected from a measurement pro-
cess strictly localized on N -shaped (left) and U -shaped (mid-
dle) subsystems. In comparison, the set of superselection sec-
tors of point-like excitations in the vicinity of the gapped do-
main wall can be detected from a measurement on O-shaped
(right) subsystems.

the set CN contains two Abelian sectors and CU contains
a unique (vacuum) sector. However, there can be parton
sectors with quantum dimensions strictly larger than 1.
For example, one of the gapped domain wall types [7]
between the non-Abelian S3 quantum double (on the P
side) and the toric code (on the Q side) has CN = {1, n}
and CU = {1}, where dn =

√
2.

The parton sectors can be detected from far away, by
presumably performing an Aharonov-Bohm type inter-
ference experiment, but by merely closing a “half-loop”;
see Fig. 2(b). That the different sectors can be discerned
this way suggests that there is a profound form of ground
state entanglement in the vicinity of the domain wall that
cannot be probed locally. Domain wall topological entan-
glement entropy precisely captures this nonlocal piece of
information. In the remainder of this letter, we shall
justify this physical interpretation.
Information convex sets — Let us begin with the es-

sential concept called information convex set [18]; see
also [17, 20, 21]. For the readers’ convenience, we will
use a definition of information convex set, which is dif-
ferent from its original form [18]. Because these two def-
initions are equivalent under the assumptions in Fig. 1,
we do not lose any generality in our argument. The ad-
vantage of the new definition is that it simplifies many of
our analyses, facilitating us in focusing on the essential
ideas.

Consider a set of microscopic degrees freedom arranged
on a plane, denoted as Λ. Let Ω ⊂ Λ be a smooth subsys-
tem, e.g., a disk or an annulus. The information convex
set Σ(Ω), for a given reference state σ, is the set of density
matrices on Ω that satisfies the following property. For
any ρΩ ∈ Σ(Ω) and any Ω′ ⊃ Ω obtained by expanding Ω
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along its boundary whilst retaining its topology, there is
a density matrix ρ′Ω′ such that: (1) ρ′Ω′ is indistinguish-
able from the reference state σ over every disk-like region
contained in Ω′. (2) TrΩ′\Ω ρ

′
Ω′ = ρΩ.

The information convex set Σ(N) has an intimate con-
nection with Stopo,N , where N is the N -shaped region
depicted in Fig. 2(b). Specifically, suppose Σ(N) con-
tains more than one element. Then we must conclude
that Stopo,N is nonzero.

To understand why, it is helpful to assume that Stopo,N

vanishes and study the consequence of this assumption.
Consider a partition of N into ABC in Fig. 3(b). By
using the property of the information convex set, we can
extend the state ρN to some state ρ′ND, where BCD is
a partition of a disk topologically equivalent to that in
Fig. 3(a). With these subsystems, we get

I(A : C|B)ρ ≤ (SBC + SCD − SB − SD)ρ′

= (SBC + SCD − SB − SD)σ

= 0

(4)

for any ρN ∈ Σ(N), where I(A : C|B)ρ := (SAB +SBC−
SB−SABC)ρ is the conditional mutual information. The
first line follows from the strong subadditivity of entropy
(SSA) [22]. In the second line, we used the fact that ρ′

is indistinguishable from σ on the disk BCD. Eq. (4)
implies that ρN is uniquely determined by ρAB and ρBC ,
which are equal to σAB and σBC respectively [23]. There-
fore, if Stopo,N = 0, Σ(N) must contain a unique element,
proving our claim.
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Figure 3. (a) Subsystems relevant to the domain wall topo-
logical entanglement entropy Stopo,N . (b) A partition of N
into ABC. BCD is a disk.

Structure of Σ(N)— While information convex sets
generally do not have a particularly noteworthy struc-
ture, they become highly constrained if the reference
state obeys the assumptions in Fig. 1. Of particular
importance to us is the subsystem N in Fig. 2. The
information convex set of N forms a simplex:

Σ(N) =

{⊕
n

pnρ
n
N :

∑
n

pn = 1, pn ≥ 0

}
, (5)

where the extreme points ρnN are mutually orthogonal
to each other [15]. The set of labels can be identified
with the set of N -type parton sectors CN = {1, n, . . . },

where 1 denotes the vacuum sector associated with the
extreme point ρ1

N = σN . A similar conclusion holds for
the subsystem U in Fig. 2.

From the argument above, we see that the existence of
a nontrivial parton sector implies a nonzero value of do-
main wall topological entanglement entropy. A sharper
constraint on the topological entanglement entropy can
be obtained in terms of the quantum dimensions of the
parton sectors. In our theory [15], the quantum dimen-
sion for a parton sector n ∈ CN is defined as

dn := exp

(
S(ρnN )− S(ρ1

N )

2

)
. (6)

While the quantum dimension may appear to depend on
the choice of the underlying subsystem N , it does not;
the right-hand side of Eq. (6) is invariant under smooth
deformations of N , justifying our notation [15]. In the
Supplementary Material, which includes Ref. [7, 15, 24],
we shall review the identities that the quantum dimen-
sions must satisfy, thus justifying our definition.

Using Eq. (6) and the orthogonality of the extreme
points, we can quantify the “maximal ignorance” about
the parton sector. Let τN be the maximum-entropy ele-
ment of Σ(N), then

S(τN )− S(σN ) = max
{pn}

S

(∑
n

pnρ
n
N

)
− S(σN )

= max
{pn}

(
H ({pn}) +

∑
n∈CN

pn ln d2
n

)
= 2 lnDN ,

(7)

where {pn} is a probability distribution and H({pn}) :=
−
∑
n pn ln pn. To obtain the third line, we have plugged

in the optimal choice of pn = d2
n/D2

N . We may interpret
the result in Eq. (7) as the maximal ignorance of the par-
ton sector; this quantifies the amount of information that
remain unspecified if we only have access to subsystems
AB and BC.

The conditional mutual information is lower bounded
by this maximal ignorance:

I(A : C|B)σ = S(τN )− S(σN ) + I(A : C|B)τ

≥ 2 lnDN .
(8)
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Figure 4. (a) Partition of N = ABC. (b) Further partition
B = B1B2 and subsystems relevant to merging.
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Merging density matrices— Remarkably, Eq. (8) actu-
ally holds with an equality. This identity follows from the
following important property of the maximum-entropy

element (τN =
∑
n
d2n
D2

N
ρnN ) of Σ(N):

S(τN ) = S(σAB) + S(σBC)− S(σB). (9)

We can establish this fact using the merging tech-
nique [18, 25]. Specifically, consider density matrices
ρAB1B2

and λB1B2C such that I(A : B2|B1)ρ = I(B1 :
C|B2)λ = 0 and ρB = λB , where B = B1B2. Then there
exists a density matrix τ̃ABC such that τ̃AB = ρAB and
τ̃BC = λBC . Moreover, τ̃ABC obeys

I(A : C|B)τ̃ = 0, (10)

which means that τ̃ABC is the unique maximum-entropy
state consistent with ρAB and λBC [25]. Here we say two
states are consistent with each other if their reduced den-
sity matrices on their overlapping support are identical.

We can use this result in the following way. Partition
N into A, B = B1B2, and C, as is shown in Fig. 4(b). It
follows from our assumption that

I(A : B2|B1)σ = I(B1 : C|B2)σ = 0, (11)

using the same logic that led to Eq. (4). Moreover, σAB
and σBC are identical on B because they are obtained
from the same reference state. Therefore, there exists a
unique state τ̃ABC consistent with both σAB and σBC
that satisfies Eq. (10).

The fact that τ̃ABC is consistent with σAB and σBC
suggests that τ̃ABC may belong to Σ(N). This turns out
to be correct, provided that the involved subsystems are
sufficiently large.2 Thus, the maximum-entropy state of
Σ(N) is identical with the merged state, τABC = τ̃ABC ,
and therefore I(A : C|B)τ = 0. This implies that the
lower bound in Eq. (8) saturates, leading to the following
expression:

I(A : C|B)σ = 2 lnDN . (12)

By Eq. (7), Eq. (12) quantifies the maximal ignorance
about the parton sector, given access to subsystems AB
and BC in Fig. 4(a).
Domain wall topological entanglement entropy— Next,

let us establish the equivalence of I(A : C|B)σ to the
domain wall topological entanglement entropy Stopo,N .
Consider the partition in Fig. 5, which contains both the
region ABC used in Eq. (12) and the BCD for the defi-
nition of Stopo,N . The following is an important identity:

Stopo,N − I(A : C|B)σ

=(SABC + SCD − SD − SAB)σ.
(13)

2 Specifically, A and C must be separated by a distance large com-
pared to the radius of the minimal disk that obeys the conditions
in Fig. 1. This fact was rigorously established in Ref. [18]; see
Section II of Ref. [15] for a review.

We show that the bottom line of Eq. (13) vanishes, thus
establishing Stopo,N = I(A : C|B)σ. This can be shown
by lower and upper bounding (SABC+SCD−SD−SAB)σ
by 0. Note that (SABC +SCD −SD −SAB)σ ≥ 0 follows
straightforwardly from SSA. Moreover,

(SABC + SCD − SD − SAB)σ

≤(SABCD1 + SCD − SD2 − SAB)σ

=0.

(14)

The second line follows from SSA. The third line is ob-
tained by applying our assumptions in Fig. 1.
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Figure 5. The partition used in the proof of Eq. (2). D1D2 =
D.

Therefore, I(A : C|B)σ = Stopo,N . Of course, the
same analysis applies to Stopo,U . This leads to our main
conclusion:

Stopo,N = 2 lnDN and Stopo,U = 2 lnDU . (15)

Summary — We have proposed a domain wall analog
of topological entanglement entropy and derived its exact
expression. We envision this to be a valuable tool to
detect the presence of nontrivial gapped domain walls
from ground-state entanglement.
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