

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations

C. To et al. (DES Collaboration)

Phys. Rev. Lett. **126**, 141301 — Published 6 April 2021 DOI: 10.1103/PhysRevLett.126.141301

Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations

C. To,^{1,2,3,*} E. Krause,^{4,5,†} E. Rozo,⁵ H. Wu,^{6,7} D. Gruen,^{1,2,3} R. H. Wechsler,^{1,2,3} T. F. Eifler,⁴ E. S. Rykoff,^{2,3} M. Costanzi,^{8,9} M. R. Becker,¹⁰ G. M. Bernstein,¹¹ J. Blazek,^{6,12} S. Bocquet,¹³ S. L. Bridle,¹⁴ R. Cawthon,¹⁵ A. Choi,⁶ M. Crocce,^{16,17} C. Davis,² J. DeRose,^{18,19} A. Drlica-Wagner,^{20,21,22} J. Elvin-Poole,^{6,23} X. Fang,⁴ A. Farahi,²⁴ O. Friedrich,²⁵ M. Gatti,²⁶ E. Gaztanaga,^{16,17} T. Giannantonio,^{27,25} W. G. Hartley,^{28,29,30} B. Hoyle,^{13,31,32} M. Jarvis,¹¹ N. MacCrann,^{6,23} T. McClintock,⁵ V. Miranda,⁴ M. E. S. Pereira,²⁴ Y. Park,⁵ A. Porredon,^{6,16,17} J. Prat,²⁰ M. M. Rau,³³ A. J. Ross,⁶ S. Samuroff,³³ C. Sánchez,¹¹ I. Sevilla-Noarbe,³⁴ E. Sheldon,³⁵ M. A. Troxel,³⁶ T. N. Varga,^{31,32} P. Vielzeuf,²⁶ Y. Zhang,²¹ J. Zuntz,³⁷ T. M. C. Abbott,³⁸ M. Aguena,^{39,40} A. Amon,² J. Annis,²¹ S. Avila,⁴¹ E. Bertin,^{42,43} S. Bhargava,⁴⁴ D. Brooks,²⁹ D. L. Burke,^{2,3} A. Carnero Rosell,^{45,46} M. Carrasco Kind,^{47,48} J. Carretero,²⁶ C. Chang,^{20,22} C. Conselice,^{14,49} L. N. da Costa,^{40,50} T. M. Davis,⁵¹ S. Desai,⁵² H. T. Diehl,²¹ J. P. Dietrich,¹³ S. Everett,¹⁹ A. E. Evrard,^{53,24} I. Ferrero,⁵⁴ B. Flaugher,²¹ P. Fosalba,^{16,17} J. Frieman,^{21,22} J. García-Bellido,⁴¹ R. A. Gruendl,^{47,48} G. Gutierrez,²¹ S. R. Hinton,⁵¹ D. L. Hollowood,¹⁹ K. Honscheid,^{6,23} D. Huterer,²⁴ D. J. James,⁵⁵ T. Jeltema,¹⁹ R. Kron,^{21,22} K. Kuehn,^{56,57} N. Kuropatkin,²¹ M. Lima,^{39,40} M. A. G. Maia,^{40,50} J. L. Marshall,⁵⁸ F. Menanteau,^{47,48} R. Miquel,^{59,26} R. Morgan,¹⁵ J. Muir,² J. Myles,¹ A. Palmese,^{21,22} F. Paz-Chinchón,^{27,48} A. A. Plazas,⁶⁰ A. K. Romer,⁴⁴ A. Roodman,^{2,3} E. Sanchez,³⁴ B. Santiago,^{61,40} V. Scarpine,²¹ S. Serrano,^{16,17} M. Smith,⁶² E. Suchyta,⁶³ M. E. C. Swanson,⁴⁸ G. Tarle,²⁴ D. Thomas,⁶⁴ D. L. Tucker,²¹ J. Weller,^{31,32} W. Wester,²¹ and R.D. Wilkinson⁴⁴ (DES Collaboration) ¹Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA ³SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

⁴Department of Astronomy/Steward Observatory, University of Arizona,

933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

⁵Department of Physics, University of Arizona, Tucson, AZ 85721, USA

⁶Center for Cosmology and Astro-Particle Physics.

The Ohio State University, Columbus, OH 43210, USA

⁷Department of Physics, Boise State University, Boise, ID 83725, USA

⁸INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy ⁹Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy

¹⁰Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

¹¹Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

¹²Institute of Physics, Laboratory of Astrophysics,

École Polytechnique Fédérale de Lausanne (EPFL),

Observatoire de Sauverny, 1290 Versoix, Switzerland

¹³Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany

¹⁴ Jodrell Bank Center for Astrophysics, School of Physics and Astronomy,

University of Manchester, Oxford Road, Manchester, M13 9PL, UK

¹⁵Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison,

1150 University Avenue Madison, WI 53706-1390

¹⁶Institut d'Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain ¹⁷Institute of Space Sciences (ICE, CSIC), Campus UAB,

Carrer de Can Magrans, s/n, 08193 Barcelona, Spain

¹⁸Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA

¹⁹Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

²⁰Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

²¹ Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

²²Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

²³Department of Physics, The Ohio State University, Columbus, OH 43210, USA

²⁴ Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

²⁵Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

²⁶Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain

²⁷Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

²⁸Département de Physique Théorique and Center for Astroparticle Physics,

Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland

²⁹Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

³⁰Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland

³¹ Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany

³² Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians

Universität München, Scheinerstr. 1, 81679 München, Germany

³³Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15312, USA

³⁴Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

³⁵Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA

³⁶Department of Physics, Duke University Durham, NC 27708, USA

³⁷Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK

³⁸Cerro Tololo Inter-American Observatory, NSF's National Optical-Infrared

Astronomy Research Laboratory, Casilla 603, La Serena, Chile

³⁹ Departamento de Física Matemática, Instituto de Física,

Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil

⁴⁰Laboratório Interinstitucional de e-Astronomia - LIneA,

Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

⁴¹Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain

⁴² CNRS, UMR 7095, Institut d'Astrophysique de Paris, F-75014, Paris, France

⁴³Sorbonne Universités, UPMC Univ Paris 06, UMR 7095,

Institut d'Astrophysique de Paris, F-75014, Paris, France

⁴⁴Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK

⁴⁵Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain

⁴⁶Universidad de La Laguna, Dpto. Astrofsica, E-38206 La Laguna, Tenerife, Spain

⁴⁷Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

⁴⁸National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

⁴⁹ University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD, UK

⁵⁰ Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

⁵¹School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

⁵²Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

⁵³Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

⁵⁴Institute of Theoretical Astrophysics, University of Oslo. P.O. Box 1029 Blindern, NO-0315 Oslo, Norway

⁵⁵Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

⁵⁶Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

⁵⁷Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA

⁵⁸George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,

and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

⁵⁹Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

⁶⁰Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

⁶¹Instituto de Física, UFRGS, Caixa Postal 15051, Porto Alegre, RS - 91501-970, Brazil

⁶²School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

⁶³Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁶⁴Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK

(Dated: January 7, 2021)

We present the first joint analysis of cluster abundances and auto/cross correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis $(4 \times 2pt+N)$ of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain $\Omega_m =$ $0.305^{+0.058}_{-0.038}$ and $\sigma_8 = 0.783^{+0.064}_{-0.054}$. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat $\nu\Lambda$ CDM model. **Consequently, we** combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multi-probe analyses of upcoming wide imaging surveys.

PACS numbers: 98.80.-k, 98.80.Es, 98.65.-r Keywords: Cosmology, Cosmological parameters, Galaxy cluster counts, Large-scale structure of the universe

Introduction. — The standard flat Λ CDM model has been remarkably successful at describing a broad range of cosmological observations across the history of the universe. However, a fundamental physics explanation of the two main constituents of this model — dark matter and dark energy — is still missing. This has inspired ambitious cosmic surveys that are testing the Λ CDM model with increasingly precise measurements of complementary cosmological probes [1].

Wide-field imaging surveys, such as the Dark Energy Survey (DES¹), the Hyper-Suprime Cam Subaru Strategic Program (HSC²), and the Kilo Degree Survey (KiDS³), are one class of these cosmic surveys, which map the spatial distribution, shapes, and colors of millions of galaxies. These data sets enable a wide range of cosmological measurements [2–8]. Two of the most established cosmological probes are galaxy clustering and weak gravitational lensing. Analyses that include the auto-correlation of these two tracer fields as well as their cross correlation, galaxy–galaxy lensing, are referred to as $3\times 2pt$ analyses and are emerging as a competitive cosmological test.

The abundances and spatial distribution of galaxy clusters provide another powerful probe of cosmic structure formation and expansion history [9]. The principal obstacle to robust cosmological inference from cluster abundances is an accurate calibration of the relation between cluster observables and cluster mass [10–14]. In this work, we combine three cluster related cross-correlations with galaxy clustering to calibrate this relation. We note that despite the use of galaxy clustering, the cosmological information in our combined analysis is driven by the the cluster abundance data, with galaxy clustering breaking degeneracies between cosmology and the cluster observable-mass relation.

In this *letter*, we first demonstrate the consistency between our cluster cosmology analysis $(4 \times 2pt+N)$, the 3×2 pt analysis, and other cluster cosmology analyses, in the context of the ACDM model with massive neutrinos ($\nu \Lambda CDM$). We then present the first *joint* analysis, referred to as $6 \times 2pt + N$, of galaxy clusters abundances and clustering, galaxy clustering, and weak gravitational lensing. In Fig. 1, we summarize the different components of the analysis. Our analysis uses the same set of systematics modeling, calibration procedures, and analysis pipeline across all probes, and properly accounts for the covariance between the probes. We demonstrate that combining galaxy clusters and the 3×2 pt analysis improves both cosmological and cluster mass-observable relation constraints, compared to these individual analyses.

Data and Measurement. — We measure galaxy density fields, weak gravitational lensing shear fields, and cluster density fields from the 1321 deg² of imaging data taken in the first season of the Dark Energy Survey [15] (DESY1). The measurement is based on procedures described in [16] using the DESY1 public catalogs⁴. These

FIG. 1. Summary of the different components in this analysis and a non-exhaustive list of papers describing and validating our methodology. **A more comprehensive list of relevant references can be found in** [3, 14, and references therein]. The data in this paper consist of cluster abundances (N) and six two-point correlation functions derived from three cosmic tracer fields, namely galaxy density (δ_g), weak gravitational lensing shear (γ), and cluster density (δ_c). The correlation functions include cosmic shear ($\gamma\gamma$), galaxy–galaxy lensing ($\delta_g \gamma$), galaxy clustering ($\delta_g \delta_g$), cluster–galaxy crosscorrelation ($\delta_c \delta_g$), cluster auto-correlation ($\delta_c \delta_c$), and cluster lensing ($\delta_c \gamma$).

include the redMaGiC galaxy catalog [17] for the galaxy density field; the METACALIBRATION shape cata- $\log [18]$ and BPZ photometric redshift (photo-z) catalog [19] for the weak gravitational lensing shear field; and the redMaPPer cluster catalog [20] for the cluster density field. To construct the galaxy density field, $\sim 650,000$ redMaGiC galaxies over the redshift range 0.15 < z < 0.9are split into five redshift bins based on their photo-z estimations. The weak gravitational lensing shear field is constructed based on ~ 26 million galaxies spanning the redshift range 0.2 < z < 1.3, split into four redshift bins based on BPZ photo-z estimation. For the cluster density fields, 4794 redMaPPer clusters are split into three redshift bins spanning the range 0.2 < z < 0.6. The clusters are further split into four bins based on their richness (λ) , a cluster mass proxy defined as a weighted sum of the cluster red-sequence member galaxies. The clusters span the richness range $20 < \lambda < 235$.

We measure six two-point correlations from the three cosmic tracer fields, as described in Fig. 1. The $3\times 2pt$ correlations are the DESY1 public $3\times 2pt$ data vector⁵. The cluster (cross-)correlations and cluster abundances are measured following procedures described in [16].

Modeling + Inference. — We assume a Gaussian likelihood function as detailed below.

Covariance and Model — The covariance matrix [21] is derived based on halo models [22, 23] and is validated in

¹ https://www.darkenergysurvey.org/

² http://www.naoj.org/Projects/HSC/HSCProject.html

³ http://www.astro-wise.org/projects/KIDS/

 $^{{}^4\ {\}rm https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs}$

⁵ https://des.ncsa.illinois.edu/releases/y1a1/key-products

[2, 16]. The derivation and construction procedures are detailed in [16]. We relate the abundances of galaxy clusters to the halo mass function [24] assuming a power-law relation with log-normal scatter between the halo mass and cluster richness [16]. The three cosmic tracer fields are assumed to be linearly related to the matter density field, whose power spectrum is modeled using CLASS [25] and HALOFIT [26]. The model of cosmic shear and galaxy–galaxy lensing is described and validated in [2, 27], while the model of $4 \times 2pt+N$ is described and validated in [16] with modifications to the modeling of the effect of massive neutrinos [21]. Both the covariance matrix derivation and the model prediction are implemented in COSMOLIKE [23]

Analysis Choices — We have designed our analysis to ensure robustness of the inferred result. Key analysis choices are summarized below.

(i) Only large scale information is used. Due to uncertainties of modeling baryonic effects, non-linear relations between cosmic tracer fields and matter density fields, and random fluctuations of sparse tracers on small scales, we adopt conservative angular scale cuts on the two-point correlation functions. The scale cuts of $3 \times 2pt$ data vectors are defined and validated in [2]; the scale cuts of $4 \times 2pt+N$ are defined and validated in [16].

(ii) The same set of parameters and priors are used in $3 \times 2pt$, $4 \times 2pt + N$, and $6 \times 2pt + N$ analyses. In addition to the six cosmological parameters in the $\nu\Lambda CDM$ model, we simultaneously sample over 26 nuisance parameters [21]. These include galaxy bias parameters (5), lens and source galaxy photo-z biases (9), multiplicative shear biases (4), intrinsic alignment parameters (2), parameters describing the richness-mass relation (4), and parameters describing selection bias for clusters (2). For detailed descriptions of these nuisance parameters and the associated priors, we refer the readers to [2, 16, 21]. We note that we do not account for intrinsic alignments in the cluster lensing analysis. The effect is expected to be small [28] and was not included in the previous weak lensing analysis of the same sample [29]. In addition, in the cluster lensing model, we exclude bins where the maximum redshift of galaxy clusters is larger than the mean redshift of source galaxies.

(*iii*) The analysis was done blindly. Cosmological parameters were blinded by random shifts before the analysis choices were determined. We detail our blinding procedure in [21].

We use Multinest [30] to generate Monte Carlo Markov Chain (MCMC) samples from the posterior. We find consistent results when using emcee [31].

Parameter	$3 \times 2 pt$	$4 \times 2 pt + N$	$6 \times 2 pt + N$	Flat Prior
$\Omega_{\rm m}$	0.297 ± 0.036	$0.305^{+0.055}_{-0.038}$	$0.276^{+0.033}_{-0.026}$	[0.1, 0.9]
$A_{s} (\times 10^{9})$	$2.15_{-0.34}^{+0.38}$	$2.27^{+0.57}_{-0.41}$	$2.08^{+0.41}_{-0.31}$	[0.5, 5]
n_s	-	-	-	[0.87, 1.07]
$\Omega_{ m b}$	-	-	-	[0.03, 0.07]
$\Sigma m_{\nu}[eV]$	-	-	-	[0.047, 0.931]
h	-	-	-	[0.55, 0.91]
σ_8	$0.771^{+0.064}_{-0.054}$	$0.783\substack{+0.064\\-0.054}$	$0.802\substack{+0.056\\-0.048}$	Derived
v^2 (d o f)	512 (444)	610 (567)	1054 (002)	
χ (0.0.1)	0.014	0.103	0.084	
<i>p</i> -value	0.014	0.103	0.004	

TABLE I. Summary of cosmological parameter constraints in the $\nu \Lambda CDM$ model from three combinations of data vectors, as described in Fig. 1 The number reported is the 1D peak of the posterior and the asymmetric 68% confidence interval. Cells with no entries correspond to posteriors dominated by the priors. The last two rows summarize the goodness of fit for each data vector computed at the best-fit model.

FIG. 2. Comparison of $\nu\Lambda$ CDM constraints on $\Omega_{\rm m}$ and σ_8 derived from 4×2pt+N (blue) and other cluster cosmology analyses in the literature: DES-Y1 joint analysis of cluster abundances and weak lensing mass estimates from [14] (green); a joint analysis of DES cluster abundances and SPT-SZ multi-wavelength data from [32] (black); the Weighing the Giants study from [11] (purple); the SPT-2500 analysis from [12] (pink). Contours show 68% and 95% confidence levels.

Cluster cosmology — We first compare our cosmological constraints $(4\times 2pt+N)$ with cluster analyses in the literature. The result is shown in Fig. 2. According to the $Q_{\rm DM}$ tension metric [33], the $4\times 2pt+N$ constraints **are consistent**⁶ with most of the cluster cosmology analyses within 0.6σ , except for the constraints from

Results and Discussions — Table I presents the cosmological parameter constraints from $3 \times 2pt$, $4 \times 2pt+N$, and $6 \times 2pt+N$.

⁶ Since no tension metric can guarantee consistency, we use the word 'consistent' as a short expression of no significant inconsistency found by the tension metric throughout the paper.

FIG. 3. $\nu\Lambda$ CDM constraints on $\Omega_{\rm m}$ and σ_8 from 3×2pt (black), 4×2pt+N (blue), and their combination (red). For comparison, the green contours show constraints from the CMB at high redshift (Planck without lensing). Contours show 68% and 95% confidence levels.

a joint analysis of cluster abundances and weak lensing mass estimates in the DES-Y1 data [14] (hereafter called DES20). DES20 is in 2.9 σ tension with our 4×2pt+N analysis despite the fact that the two analyses share the same galaxy cluster and weak gravitational lensing shear catalogs. The main difference between $4 \times 2 pt + N$ and DES20 is that $4 \times 2pt + N$ only uses large-scale information while the DES20 signal-to-noise is dominated by small-scale cluster lensing. We note that a similar tension has been found when comparing DES20 with a joint analysis of the DES cluster abundances and SPT-SZ multi-wavelength data [32] (hereafter called C20). In C20, the cluster mass-observable scaling relation is calibrated by cross-matching the redMaPPer and SPT-SZ catalog (mean $\lambda = 78$) and using the high-quality Xray and weak lensing follow-up data available for 121 SPT-SZ clusters to constrain the scaling relation [34–39]. Comparison between DES20, C20, and $4 \times 2pt+N$ suggests that the tension between the DES20 analysis and other cluster cosmology analyses is likely due to unmodeled systematic artifacts in the weak lensing data of the redMaPPer clusters at small scales. This is consistent with the interpretation advanced by DES20. Alternatively, the low lensing signal observed for redMaPPer clusters may be related to the lensing-is-low problem for massive galaxies in the SDSS [40]. Should these two lensing anomalies be related, it is interesting to note that this anomaly **disappears** at the high mass end of the mass function. The resolution to the lensing anomaly at small scales remains unknown.

Systematics of redMaPPer clusters — Photometrically selected galaxy clusters are subject to two important

systematics: projection effects [14, 45, 46] and orientation biases [14, 47]. These two systematics bias the observed galaxy and matter overdensities of the selected galaxy clusters relative to randomly selected halos of the same mass. On large scales these two effects manifest as a **multiplicative** bias factor (b_{sel}) in the amplitude of the correlation functions, which can be sufficiently described by a power law in mass: $b_{sel}(M) =$ $b_{s0}(M/5 \times 10^{14} h^{-1} M_{\odot})^{b_{s1}}$ [16]. From the $6 \times 2 pt+N$ analysis, we obtain $b_{s0} = 1.15^{+0.11}_{-0.09}$ and $b_{s1} = -0.029^{+0.056}_{-0.062}$. **This result can be used to compare against future simulation-based estimates of these systematics.**

Comparison of different cosmological probes in the Dark Energy Survey — Fig. 3 shows a comparison between $3 \times 2pt$ and $4 \times 2pt+N$. Here, before the analysis was unblinded, the tension metric was set to Q_{UDM} [33, 48], which compares the parameters from $3 \times 2pt$ and from its combination with $4 \times 2pt+N$. According to Q_{UDM} , the tension between $3 \times 2pt$ and $4 \times 2pt + N$ is 0.024σ , indicating a strong consistency between galaxy clustering, weak gravitational lensing, and galaxy clusters in the context of the $\nu \Lambda CDM$ model. Given the demonstrated consistency between $3 \times 2pt$ and $4 \times 2pt+N$, we proceed to perform a joint analysis of cluster abundances and all six two-point correlations derived from galaxy density fields, galaxy cluster density fields, and weak gravitational lensing shear fields. The constraints from this combination $(6 \times 2pt+N)$ are shown in Fig. 3. Our $6 \times 2pt+N$ analysis leads to a $\sim 20\%$ improvement on the constraints of $\Omega_{\rm m}$ relative to the $3 \times 2pt$ constraints.

Since DES only measures the matter distribution when the universe is older than 10 billion years, it is interesting to compare our constraints to those derived from the Early Universe as inferred from the Cosmic Microwave Background (CMB). Specifically, we compare our result with the prediction from the joint TT, EE, BB, TE likelihood measured by the Plank satellite [49], reanalyzed using the DES analysis choice of marginalizing over the unknown sum of neutrino masses [3]. The comparison is shown in Fig. 3. Despite the visual offset between the Planck $\nu \Lambda \text{CDM}$ prediction and $6 \times 2 \text{pt} + \text{N}$, we find that the tension is at the level of 1.42σ , according to the tension metric [50]. The consistency between $6 \times 2pt+N$ and Planck is strong confirmation of the validity of the $\nu \Lambda CDM$ model. Built on many previous works [3, 14, and references therein], Fig. 3 presents the first joint analysis of galaxy clustering, galaxy lensing, and galaxy cluster abundance and clustering. This is an important milestone in multiprobe analyses of imaging surveys.

Mean mass of redMaPPer clusters — A precise measurement of cluster masses is important, for cosmological exploitation of cluster samples as well as for astrophysical studies involving galaxy clusters [e.g. 51-54]. From $4\times2pt+N$ and $6\times2pt+N$ analyses, we can derive the mean mass of the redMaPPer clusters and its de-

FIG. 4. Comparison of the predicted mean mass at richness $\lambda = 40$ and redshift z = 0.35 and the slope of the richness scaling relation from this *letter* (blue and red) with results in literature: a joint analysis of number counts and weak lensing mass estimates [14] (light green); a joint analysis of DES cluster abundances and SPT-SZ multi-wavelength data [32] (black); SZ scaling relation [41] (dark green); auto-correlations of galaxy clusters [42] (purple); velocity dispersion [43] (gray); and CMB lensing [44] (brown). Error bars show 68% confidence intervals. The slope is unconstrained in [44]. We note that [14, 32] marginalize over cosmological parameters while [41–44] fix cosmological parameters.

pendence on the richness. The result is shown in Fig. 4 and the calculation is detailed in [21]. The $6 \times 2pt+N$ analysis yields a $\sim 20\%$ improvement on the constraints of mean cluster masses and their richness dependency compared to $4 \times 2pt+N$. From the $6 \times 2pt+N$ analysis, the mean mass of redMaPPer clusters at z = 0.35 is constrained as

$$\langle M_{200\mathrm{m}} | \lambda \rangle = 10^{14.351 \pm 0.020} \left(\frac{\lambda}{40}\right)^{1.058 \pm 0.074} h^{-1} M_{\odot},$$

where M_{200m} is the mass enclosed within a sphere in which the mean matter density is equal to 200 times the mean matter density of the universe. In Fig. 4, we compare our constraints with results in the literature and find that our constraints are competitive. In terms of the consistency between different methods, we caution the reader that constraints on the mean mass and the slope of the mass-richness relation might change by up to 15% and 10% respectively due to assumptions about the modeling of projection effects [32]. Homogenization of projection-effect modeling is beyond the scope of this work.

Conclusions and outlook — In this *letter*, we present the first joint analysis of cluster abundances and six twopoint correlation functions derived from three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density. Our findings can be summarized as follows:

(i) Despite the surprising results of the DES-Y1 cluster abundances analysis [14], our multi-probe cluster cosmology approach finds consistent results compared with other cluster cosmology analyses and other cosmological probes in DES. This is likely a consequence of our analysis being restricted to large scales only. This result, together with C20 [32], suggests that the modeling of

small-scale cluster lensing for low mass optically selected clusters is the likely culprit behind the surprising results in [14].

(*ii*) We find that combining galaxy clusters with galaxy clustering and weak gravitational lensing improves both cosmological constraints and constraints on the mean mass of galaxy clusters by $\sim 20\%$, compared to results from galaxy clustering and weak gravitational lensing.

(*iii*) The combined cosmological constraint from DES is consistent with Planck at the 1.4σ level in the context of the $\nu\Lambda$ CDM model.

(iv) Combining galaxy clusters with galaxy clustering and weak gravitational lensing provides a precise constraint on the mean mass of galaxy clusters and its richness dependence.

In the near future, we expect a $\sim 40\%$ improvement in cosmological constraints for $4\times 2pt+N$ from the analysis of the first three years of data from the Dark Energy Survey, mostly due to the increased survey area. This improvement will be followed by significant additional improvements from upcoming wide imaging surveys in the 2020s [55–57]. The analysis presented in this *letter* is an important step towards fully realizing the potential of these richer and larger datasets.

Acknowledgements. — This paper has gone through internal review by the DES collaboration. This work was supported in part by the U.S. Department of Energy contract to SLAC National Accelerator Laboratory, under contract no. DE-AC02-76SF00515 (CH, DG, RW) including a Panofsky Fellowship awarded to DG. EK is supported by the Department of Energy grant DE-SC0020247. ER is supported by DOE grants DE-SC0015975 and DE-SC0009913, and by NSF grant 2009401. ER also acknowledges funding from the Cottrell Scholar program of the Research Corporation for Science Advancement. HW is supported by NSF Grant AST-1516997. Some of the computing for this project was performed on the Sherlock cluster at Stanford. We would like to thank KIPAC, Stanford University, and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results.

Funding for the DES Projects has been provided by the DOE and NSF(USA), MEC/MICINN/MINECO(Spain), STFC(UK), HEFCE(UK). NCSA(UIUC), KICP(U. Chicago), CCAPP(Ohio State), MIFPA(Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG(Germany) and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NFS's NOIRLab, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-American Observatory at NSFs NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

The DES Data Management System is supported by the NSF under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. [†] krausee@arizona.edu

- D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Physics Reports 530, 87255 (2013), ISSN 0370-1573, URL http://dx. doi.org/10.1016/j.physrep.2013.05.001.
- [2] E. Krause, T. F. Eifler, J. Zuntz, O. Friedrich, M. A. Troxel, S. Dodelson, J. Blazek, L. F. Secco, N. Mac-Crann, E. Baxter, et al., arXiv e-prints arXiv:1706.09359 (2017), 1706.09359.
- [3] T. M. C. Abbott, F. B. Abdalla, A. Alarcon, J. Aleksić, S. Allam, S. Allen, A. Amara, J. Annis, J. Asorey, S. Avila, et al., Phys. Rev. D 98, 043526 (2018), 1708.01530.
- [4] C. Hikage, M. Oguri, T. Hamana, S. More, R. Mandelbaum, M. Takada, F. Köhlinger, H. Miyatake, A. J. Nishizawa, H. Aihara, et al., PASJ **71**, 43 (2019), 1809.09148.
- [5] T. Hamana, M. Shirasaki, S. Miyazaki, C. Hikage, M. Oguri, S. More, R. Armstrong, A. Leauthaud, R. Mandelbaum, H. Miyatake, et al., PASJ 72, 16 (2020), 1906.06041.
- [6] E. van Uitert, B. Joachimi, S. Joudaki, A. Amon, C. Heymans, F. Köhlinger, M. Asgari, C. Blake, A. Choi, T. Erben, et al., MNRAS 476, 4662 (2018), 1706.05004.
- [7] S. Joudaki, C. Blake, A. Johnson, A. Amon, M. Asgari, A. Choi, T. Erben, K. Glazebrook, J. Harnois-Déraps, C. Heymans, et al., MNRAS 474, 4894 (2018), 1707.06627.
- [8] C. Heymans, T. Tröster, M. Asgari, C. Blake, H. Hildebrandt, B. Joachimi, K. Kuijken, C.-A. Lin, A. G. Sánchez, J. L. van den Busch, et al., arXiv e-prints arXiv:2007.15632 (2020), 2007.15632.
- [9] S. W. Allen, A. E. Evrard, and A. B. Mantz, Annual Review of Astronomy and Astrophysics 49, 409 (2011), https://doi.org/10.1146/annurev-astro-081710-102514, URL https://doi.org/10.1146/ annurev-astro-081710-102514.
- [10] A. von der Linden, M. T. Allen, D. E. Applegate, P. L. Kelly, S. W. Allen, H. Ebeling, P. R. Burchat, D. L. Burke, D. Donovan, R. G. Morris, et al., MNRAS 439, 2 (2014), 1208.0597.
- [11] A. B. Mantz, A. von der Linden, S. W. Allen, D. E. Applegate, P. L. Kelly, R. G. Morris, D. A. Rapetti, R. W. Schmidt, S. Adhikari, M. T. Allen, et al., MNRAS 446, 2205 (2015), 1407.4516.
- [12] S. Bocquet, J. P. Dietrich, T. Schrabback, L. E. Bleem, M. Klein, S. W. Allen, D. E. Applegate, M. L. N. Ashby, M. Bautz, M. Bayliss, et al., ApJ 878, 55 (2019), 1812.01679.
- [13] M. Costanzi, E. Rozo, M. Simet, Y. Zhang, A. E. Evrard, A. Mantz, E. S. Rykoff, T. Jeltema, D. Gruen, S. Allen, et al., MNRAS 488, 4779 (2019), 1810.09456.
- [14] T. M. C. Abbott, M. Aguena, A. Alarcon, S. Allam, S. Allen, J. Annis, S. Avila, D. Bacon, K. Bechtol, A. Bermeo, et al., Phys. Rev. D **102**, 023509 (2020), 2002.11124.
- [15] A. Drlica-Wagner, I. Sevilla-Noarbe, E. S. Rykoff, R. A. Gruendl, B. Yanny, D. L. Tucker, B. Hoyle, A. Carnero Rosell, G. M. Bernstein, K. Bechtol, et al., ApJS 235, 33 (2018), 1708.01531.

- [16] C. To, E. Krause, E. Rozo, H. Wu, D. Gruen, J. DeRose, E. S. Rykoff, R. H. Wechsler, M. R. Becker, M. Costanzi, et al., arXiv e-prints arXiv:2008.10757 (2020), 2008.10757.
- [17] E. Rozo, E. S. Rykoff, A. Abate, C. Bonnett, M. Crocce, C. Davis, B. Hoyle, B. Leistedt, H. V. Peiris, R. H. Wechsler, et al., MNRAS 461, 1431 (2016), 1507.05460.
- [18] J. Zuntz, E. Sheldon, S. Samuroff, M. A. Troxel, M. Jarvis, N. MacCrann, D. Gruen, J. Prat, C. Sánchez, A. Choi, et al., MNRAS 481, 1149 (2018), 1708.01533.
- [19] B. Hoyle, D. Gruen, G. M. Bernstein, M. M. Rau, J. De Vicente, W. G. Hartley, E. Gaztanaga, J. DeRose, M. A. Troxel, C. Davis, et al., MNRAS 478, 592 (2018), 1708.01532.
- [20] E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, J. Hao, B. P. Koester, A. Leauthaud, B. Nord, et al., ApJ 785, 104 (2014), 1303.3562.
- [21] See Supplemental Material.
- [22] A. Cooray and R. Sheth, Phys. Rep. 372, 1 (2002), astroph/0206508.
- [23] E. Krause and T. Eifler, MNRAS 470, 2100 (2017), 1601.05779.
- [24] J. L. Tinker, B. E. Robertson, A. V. Kravtsov, A. Klypin, M. S. Warren, G. Yepes, and S. Gottlöber, ApJ **724**, 878 (2010), 1001.3162.
- [25] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmology Astropart. Phys. **2011**, 034 (2011), 1104.2933.
- [26] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M. Oguri, ApJ **761**, 152 (2012), 1208.2701.
- [27] N. MacCrann, J. DeRose, R. H. Wechsler, J. Blazek, E. Gaztanaga, M. Crocce, E. S. Rykoff, M. R. Becker, B. Jain, E. Krause, et al., MNRAS 480, 4614 (2018), 1803.09795.
- [28] C. Sifón, H. Hoekstra, M. Cacciato, M. Viola, F. Köhlinger, R. F. J. van der Burg, D. J. Sand, and M. L. Graham, A&A 575, A48 (2015), 1406.5196.
- [29] T. McClintock, T. N. Varga, D. Gruen, E. Rozo, E. S. Rykoff, T. Shin, P. Melchior, J. DeRose, S. Seitz, J. P. Dietrich, et al., MNRAS 482, 1352 (2019), 1805.00039.
- [30] F. Feroz, M. P. Hobson, and M. Bridges, MNRAS 398, 1601 (2009), 0809.3437.
- [31] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, PASP 125, 306 (2013), 1202.3665.
- [32] M. Costanzi, A. Saro, S. Bocquet, T. M. C. Abbott, M. Aguena, S. Allam, A. Amara, J. Annis, S. Avila, D. Bacon, et al., arXiv e-prints arXiv:2010.13800 (2020), 2010.13800.
- [33] M. Raveri and W. Hu, Phys. Rev. D 99, 043506 (2019), 1806.04649.
- [34] L. E. Bleem, B. Stalder, T. de Haan, K. A. Aird, S. W. Allen, D. E. Applegate, M. L. N. Ashby, M. Bautz, M. Bayliss, B. A. Benson, et al., ApJS **216**, 27 (2015), 1409.0850.
- [35] T. Schrabback, M. Schirmer, R. F. J. van der Burg, H. Hoekstra, A. Buddendiek, D. Applegate, M. Bradač, T. Eifler, T. Erben, M. D. Gladders, et al., A&A 610, A85 (2018), 1711.00475.
- [36] J. P. Dietrich, S. Bocquet, T. Schrabback, D. Applegate, H. Hoekstra, S. Grandis, J. J. Mohr, S. W. Allen, M. B. Bayliss, B. A. Benson, et al., MNRAS 483, 2871 (2019), 1711.05344.
- [37] M. McDonald, B. A. Benson, A. Vikhlinin, B. Stalder, L. E. Bleem, T. de Haan, H. W. Lin, K. A. Aird,

M. L. N. Ashby, M. W. Bautz, et al., ApJ **774**, 23 (2013), 1305.2915.

- [38] M. McDonald, S. W. Allen, M. Bayliss, B. A. Benson, L. E. Bleem, M. Brodwin, E. Bulbul, J. E. Carlstrom, W. R. Forman, J. Hlavacek-Larrondo, et al., ApJ 843, 28 (2017), 1702.05094.
- [39] S. Bocquet, J. P. Dietrich, T. Schrabback, L. E. Bleem, M. Klein, S. W. Allen, D. E. Applegate, M. L. N. Ashby, M. Bautz, M. Bayliss, et al., ApJ 878, 55 (2019), 1812.01679.
- [40] A. Leauthaud, S. Saito, S. Hilbert, A. Barreira, S. More, M. White, S. Alam, P. Behroozi, K. Bundy, J. Coupon, et al., MNRAS 467, 3024 (2017), 1611.08606.
- [41] L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, S. W. Allen, A. J. Anderson, J. Annis, M. L. N. Ashby, J. E. Austermann, et al., ApJS **247**, 25 (2020), 1910.04121.
- [42] E. J. Baxter, E. Rozo, B. Jain, E. Rykoff, and R. H. Wechsler, MNRAS 463, 205 (2016), 1604.00048.
- [43] A. Farahi, A. E. Evrard, E. Rozo, E. S. Rykoff, and R. H. Wechsler, MNRAS 460, 3900 (2016), 1601.05773.
- [44] S. Raghunathan, S. Patil, E. Baxter, B. A. Benson, L. E. Bleem, T. L. Chou, T. M. Crawford, G. P. Holder, T. Mc-Clintock, C. L. Reichardt, et al., ApJ 872, 170 (2019), 1810.10998.
- [45] M. Costanzi, E. Rozo, E. S. Rykoff, A. Farahi, T. Jeltema, A. E. Evrard, A. Mantz, D. Gruen, R. Mandelbaum, J. DeRose, et al., MNRAS 482, 490 (2019), 1807.07072.
- [46] T. Sunayama, Y. Park, M. Takada, Y. Kobayashi, T. Nishimichi, T. Kurita, S. More, M. Oguri, and K. Osato, arXiv e-prints arXiv:2002.03867 (2020), 2002.03867.
- [47] H.-Y. Wu et al., in prep. (2020).
- [48] M. Raveri, G. Zacharegkas, and W. Hu, Phys. Rev. D 101, 103527 (2020), 1912.04880.
- [49] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, et al., arXiv e-prints arXiv:1807.06209 (2018), 1807.06209.
- [50] Y. Park and E. Rozo, arXiv e-prints arXiv:1907.05798 (2019), 1907.05798.
- [51] G. W. Pratt, M. Arnaud, A. Biviano, D. Eckert, S. Ettori, D. Nagai, N. Okabe, and T. H. Reiprich, Space Sci. Rev. **215**, 25 (2019), 1902.10837.
- [52] T. Shin, S. Adhikari, E. J. Baxter, C. Chang, B. Jain, N. Battaglia, L. Bleem, S. Bocquet, J. DeRose, D. Gruen, et al., MNRAS 487, 2900 (2019), 1811.06081.
- [53] C.-H. To, R. M. Reddick, E. Rozo, E. Rykoff, and R. H. Wechsler, ApJ 897, 15 (2020), 1910.01656.
- [54] N. Gupta, M. Pannella, J. J. Mohr, M. Klein, E. S. Rykoff, J. Annis, S. Avila, F. Bianchini, D. Brooks, E. Buckley-Geer, et al., MNRAS **494**, 1705 (2020), 1906.11388.
- [55] The LSST Dark Energy Science Collaboration, R. Mandelbaum, T. Eifler, R. Hložek, T. Collett, E. Gawiser, D. Scolnic, D. Alonso, H. Awan, R. Biswas, et al., arXiv e-prints arXiv:1809.01669 (2018), 1809.01669.
- [56] L. Amendola, S. Appleby, A. Avgoustidis, D. Bacon, T. Baker, M. Baldi, N. Bartolo, A. Blanchard, C. Bonvin, S. Borgani, et al., Living Reviews in Relativity 21, 2 (2018), 1606.00180.
- [57] T. Eifler, H. Miyatake, E. Krause, C. Heinrich, V. Miranda, C. Hirata, J. Xu, S. Hemmati, M. Simet, P. Capak, et al., arXiv e-prints arXiv:2004.05271 (2020),

2004.05271.

- [58] M. Costanzi, F. Villaescusa-Navarro, M. Viel, J.-Q. Xia, S. Borgani, E. Castorina, and E. Sefusatti, J. Cosmology Astropart. Phys. **2013**, 012 (2013), 1311.1514.
- [59] F. Villaescusa-Navarro, F. Marulli, M. Viel, E. Branchini, E. Castorina, E. Sefusatti, and S. Saito, J. Cosmology Astropart. Phys. **2014**, 011 (2014), 1311.0866.
- [60] E. Castorina, E. Sefusatti, R. K. Sheth, F. Villaescusa-Navarro, and M. Viel, J. Cosmology Astropart. Phys. 2014, 049 (2014), 1311.1212.
- [61] E. S. Rykoff, E. Rozo, D. Hollowood, A. Bermeo-Hernand ez, T. Jeltema, J. Mayers, A. K. Romer, P. Rooney, A. Saro, C. Vergara Cervantes, et al., ApJS 224, 1 (2016), 1601.00621.
- [62] J. Elvin-Poole, M. Crocce, A. J. Ross, T. Giannantonio, E. Rozo, E. S. Rykoff, S. Avila, N. Banik, J. Blazek, S. L. Bridle, et al., Phys. Rev. D 98, 042006 (2018), 1708.01536.