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Within a natural black-box setting, we exhibit a simple optimization problem for which a quantum
variational algorithm that measures analytic gradients of the objective function with a low-depth
circuit and performs stochastic gradient descent provably converges to an optimum faster than any
algorithm that only measures the objective function itself, settling the question of whether measuring
analytic gradients in such algorithms can ever be beneficial. We also derive upper bounds on the
cost of gradient-based variational optimization near a local minimum.

Introduction.—In recent years, an array of variational
hybrid quantum-classical algorithms have been widely
studied as leading candidates for near-term quantum
computers, due to their relatively modest quantum re-
source requirements and potential of scalability. Vari-
ational algorithms have been proposed in the context
of quantum simulation (e.g. variational quantum eigen-
solvers [1, 2]), combinatorial optimization (e.g. QAOA
[3]), and machine learning (e.g. quantum classifiers [4–
8]).
In the variational setting, one can prepare states be-

longing to some parameterized family {|θ〉}θ for θ ∈ X ⊂
R

p, where p is the number of variational parameters. The
set of parameterized states which may be prepared will
depend on the specifications of the quantum device. We
consider parameterizations consisting of p “pulses” ap-
plied to some easy-to-prepare starting state |Ψ〉,

|θ〉 ··= |θ1, . . . ,θp〉 = e−iApθp/2 · · · e−iA1θ1/2 |Ψ〉 ,

where Aj is the Hermitian operator which generates pulse
j. This form of parameterization is well-motivated theo-
retically [9–11] and is widely considered in the literature.
A classical “outer loop” controls the quantum device,

which is used only for preparing variational states and
making simple measurements. The classical outer loop
uses this measurement information to perform a classical

optimization of some objective function f(θ) over the fea-
sible set X , where f(θ) is induced by some Hermitian ob-

jective observable H , via the definition f(θ) ··= 〈θ|H |θ〉.
Given the ability to prepare variational states |θ〉,

there remain the questions of what observables should be
measured, and how the measurement outcomes should be
used by the classical outer loop to find an approximate
minimizer for f(θ). Typically, the objective observable
H is decomposed as a linear combination of observables
which each can be efficiently measured in low depth. For
instance, we may always write a Pauli decomposition
H =

∑

i αiPi, where αi > 0 and Pi are tensor prod-
ucts of Pauli operators. By linearity, it is possible to
construct an estimator for 〈θ|H |θ〉 via measurements of
the Pauli strings {Pi}i.
In this work, we will find it convenient to take a novel

but natural approach for estimating the objective func-
tion or its derivatives via sampling terms of the Pauli
decomposition to measure according to an appropriate
distribution; a similar sampling strategy was previously
employed in the context of random compiling for Hamil-
tonian simulation [12]. To this end, we express H as an
expectation value, H = E EX PX , where E ··=

∑

i αi and
the random variable X is distributed as pX(x) ··= αx/E.
For a given point θ in parameter space, by linearity we
have f(θ) = 〈θ|H |θ〉 = E EX 〈θ|PX |θ〉. Hence, an un-
biased ±E-valued estimator for f(θ) may be obtained
by sampling x from the distribution pX , measuring Px

w.r.t. |θ〉, and then scaling the output by E. With esti-
mates of f obtained in this way, the classical outer loop
performs a stochastic zeroth-order (i.e. derivative-free)
optimization of the function f(θ); ‘stochastic’ because
of the randomness of the measurement outcomes when
estimating f(θ), and ‘derivative-free’ because the outer
loop receives estimates of f(θ) rather than estimates of
its gradient ∇f(θ) or of higher-order derivatives.
However, it is not apparent that such a zeroth-order

strategy is best. Indeed, as observed in a number of
works (listed in the subsequent section), by perform-
ing a slightly more complicated measurement it is possi-
ble to directly estimate ∇f(θ); this estimate can then
be used with a first-order (i.e. gradient-based) opti-
mization algorithm. To this end, we may express the
jth component of the gradient as an expectation value,
∇jf(θ) = 〈θ|Gj |θ〉, where

Gj =
i

2
[U(j+1):pAjU

†
(j+1):p, H ]

(see Section II of the Supplemental Material [13]
for a derivation). Here, Uj:k is shorthand for
e−iAkθk/2 · · · e−iAjθj/2. To measure Gj with a low-depth
circuit, we may expand Aj and H as linear combinations
of products of Pauli operators with positive coefficients,
obtaining

∇jf(θ) = Γj E
K,L

〈θ|
i

2
[U(j+1):pQ

(j)
K U †

(j+1):p, PL]|θ〉 ,

where Q
(j)
k are Pauli operators appearing in the ex-

pansion of Aj , Γj is the sum of coefficients appearing
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in the resulting expansion, and the joint probability of
(K = k, L = l), denoted qKL(k, l), is proportional to
the coefficient associated with the term in the expansion

including Q
(j)
k and Pl. A ±1-valued unbiased estima-

tor for 〈θ| i2 [U(j+1):pQ
(j)
k U †

(j+1):p, Pl]|θ〉 can be obtained

with a single measurement via a simple Hadamard-test
circuit (as described in [14–16]; see also Section II of the
Supplemental Material [13]). Now, we may construct a
±Γj-valued unbiased estimator for ∇jf(θ) with a single
measurement by sampling (k, l) from qKL, measuring the
corresponding observable as described above, and scaling
the output by Γj . Generalizations of this strategy permit
the measurement of higher-order derivatives as well.

Finally, an unbiased estimator ĝ(θ) for the full gradi-
ent may be constructed with one measurement by choos-
ing component j with probability Γj/‖~Γ‖1, estimating
∇jf(θ) using the method described above, and then scal-

ing the output by (‖~Γ‖1/Γj)êj where êj denotes the unit
vector in direction j. Here we have defined the vector
~Γ ··= (Γ1, . . . ,Γp)

⊤. It may be verified [13] that ĝ is

±‖~Γ‖1-valued, and that E ĝ = ∇f . Note that the choice
to sample j with probability proportional to Γj is opti-
mal for minimizing E ‖ĝ‖2 among all choices of sampling
weights (as may be verified via a Lagrange multiplier),
and furthermore results in this quantity having no ex-
plicit dependence on p.

Our method for constructing unbiased estimators for f
and its gradient is effectively a form of importance sam-
pling which assigns higher weight to larger terms in the
sum; this is reflected in the fact that the magnitude of
an estimator depends on an appropriate sum of coeffi-
cients, but carries no explicit dependence on the number
of terms in the decomposition (or on the number of varia-
tional parameters for the gradient estimator). This is es-
pecially relevant for applications (such as quantum chem-
istry) for which many terms of the sum may have small
weight. After a preprint of this paper was made public,
subsequent works [17, 18] have numerically studied simi-
lar estimators and have furthermore proposed methods of
adaptively setting the sampling weights associated with
each observable in the expansion [18, 19].

A fundamental question is now whether, within the
vicinity of a local optimum, “first-order” variational algo-
rithms which perform measurements to construct gradi-
ent estimators can converge faster than algorithms which
use the simpler, “zeroth-order” strategy of estimating
only the objective function itself. This question may be
especially important in the context of quantum simula-
tion, in which a precise solution is often desired. Within
a natural black-box setting, we answer this question affir-
matively by exhibiting an optimization problem for which
performing gradient measurements, and using these gra-
dient estimates in conjunction with stochastic gradient
descent (SGD) [20], converges to an optimum asymptot-
ically faster than any strategy based on measuring the

objective function.

The optimization problem we analyze to demonstrate
this separation is quite simple: it is essentially the
problem of learning the ground state of a 1-local (non-
interacting) spin Hamiltonian. While an analytic solu-
tion to this problem may be readily derived, the black-
box model ensures the variational algorithm behaves in
a generic way, rather than merely solving the problem
analytically (as this would be computationally infeasi-
ble for more complicated problems). This simple prob-
lem provides a counterexample to the proposition that,
within the natural black box setting defined below, the
convergence rate of gradient-based variational algorithms
can be generically matched by that of zeroth-order algo-
rithms. In particular, this rules out the possibility that
gradient measurements can always be replaced by gradi-
ent estimates obtained by finite-differencing energy mea-
surements without a loss of performance. This observa-
tion may be of interest in the design of practical NISQ
algorithms, in which gradient measurements could be
more difficult to implement than energy measurements.
Our results demonstrate that one cannot hope to generi-
cally simulate gradient measurements while maintaining
equivalent performance; hence, incurring extra overhead
for measuring gradients could be worthwhile.

The speedup we obtain for gradient-based algorithms
crucially relies on using an appropriate choice of varia-
tional ansatz for the problem at hand, making our toy
model setting more similar to that of variational algo-
rithms with theoretically motivated ansätze rather than
those which use a “hardware-efficient ansatz” [21]. In-
deed, the setting of “barren plateaus” [22] in which the
ansatz looks random and gradient-based optimization
fails may be viewed as the opposite situation to that
studied in this work.
While our analysis of a non-interacting system is suffi-

cient to rule out the existence of zeroth-order algorithms
which generically match the performance of first-order al-
gorithms, we cannot rule out the possibility that certain
classes of problems contain additional structure which
allows zeroth-order algorithms to match the convergence
rate of first-order algorithms. However, we might expect
the non-interacting model to exhibit qualitatively sim-
ilar behavior to that of general models in a disordered
phase which flow under RG to non-interacting systems.
Furthermore, in the toy model settings we study, the al-
gorithms are constrained to remain within the vicinity of
the optimum. Hence, our zeroth-order bounds do not ap-
ply to algorithms which may operate far from the vicinity
of the optimum to which they are trying to converge. In-
deed, in some cases analytic gradient measurements may
be performed by performing multiple “non-local” energy
measurements and combining the results [5, 23, 24].

Prior work.—Prior works had considered gradient
measurements in variational algorithms, but it remained
unclear whether they could confer an advantage. It was



3

first observed that gradients could be directly measured
in the context of hybrid quantum-classical algorithms in
[2], but the authors pointed out that “it is not clear
whether or not access to the derivative would improve the
optimization”. Many subsequent works [5, 7, 16–19, 23–
34] have proposed using gradient measurements in varia-
tional algorithms for specific applications, but lacked con-
crete theoretical evidence for an advantage over zeroth-
order algorithms; our work complements these proposals
by providing such evidence. In [15], algorithms based
on gradient measurements were numerically compared
against zeroth-order algorithms for the combinatorial op-
timization problem MaxCut. Interestingly, the authors
found no advantage for gradient-measurement-based al-
gorithms for this problem. The discrepancy between our
results and theirs could be explained by the possibil-
ity that their simulations were dominated by the cost
of finding good local optima rather than converging to
a specific local optima (as is our focus in this Letter).
Similar questions about the benefit of noisy gradients for
optimization had previously been studied in the purely
classical context [35, 36], but fundamental differences be-
tween the classical and quantum variational settings pre-
vented these results from being directly applicable in the
present setting. Nonetheless, our strategy for proving
an advantage for gradient-based variational algorithms
adapts some techniques developed in these works, which
in turn are inspired by methods from statistical minimax
and learning theory.

Black-box model.—We now discuss our rigorous sepa-
ration between the performance of zeroth-order and first-
order variational algorithms. As a prerequisite, we first
introduce a black-box model for variational algorithms.
To see why such a setting is useful, note that a classi-
cal computer with unbounded computational resources
is capable of simulating any hybrid quantum-classical al-
gorithm; in this sense, no quantum measurements are
required. Of course, this simulation will generally re-
quire exponential space and runtime, and therefore be in-
tractable. Since one of our goals is to prove lower bounds
on the number of quantum measurements required by a
variational algorithm, we must impose extra constraints
on the classical component of the algorithm to rule out
such brute-forcing behavior. A natural way to do this
which is also amenable to theoretical analysis is via a
model in which the ‘quantum’ component of the algo-
rithm is only accessible via queries to a black box. Note
that our motivation for a black-box model is analogous
to the motivation for a black-box model in the context
of purely classical optimization, where it has been found
to be a highly useful and insightful framework [20].

We now describe the black box setting. We assume the
classical outer loop is not given an explicit description of
the objective observable H , but rather has access to an
oracle OH encoding H . Suppose H = E EL PL as above.
The classical outer loop may query OH with a variational

state ansatz description Θ, a parameter θ ∈ R
p, and

optionally an index j ∈ [p]. Upon querying OH without
the optional index, which we call a zeroth-order query,
the oracle prepares the variational state |θ〉 according to
the ansatz described by Θ and outputs an unbiased ±E-
valued estimate of f(θ) following the sampling approach
described above. Similarly, upon queryingOH with index
j, which we call a first-order query, the oracle outputs an
unbiased ±Γj-valued estimate of ∇jf(θ) following the
sampling approach. Higher-order queries to the oracle
may be defined analogously, as described explicitly in
the Supplemental Material. In the black-box setting, we
say an algorithm is kth-order if it only makes queries of
order k or lower.
In this oracle model, following the classical optimiza-

tion literature [20], the classical outer loop is given black-
box access toOH and may be promised thatH belongs to
some family H, but is not given explicit knowledge of H .
The relevant performance metric of an optimization algo-
rithm in this setting is the query complexity, that is, the
number of oracle calls made by the classical algorithm. If
the oracles are implemented physically via the observable
sampling procedures described above, the query complex-
ity exactly corresponds to the number of quantum state
preparations and measurements performed.
To formally state our separation between zeroth- and

first-order variational algorithms, it will be necessary to
make some additional definitions. Let H be some fixed
set of objective observables, and suppose A is a (possibly
randomized) classical algorithm which has oracle access
to H ∈ H and outputs a (generally random) description
of a quantum state |ψ〉 from some distribution DH which
may depend on H . Then the optimization error of A
with respect to H, Err(A,H), is defined as

Err(A,H) ··= sup
H∈H

E
φ∼DH

[ 〈φ|H |φ〉 − λmin(H)],

where λmin(H) is the smallest eigenvalue of H , and the
expectation is over the possible randomness of the output
state |φ〉. That is, Err(A,H) quantifies the worst-case
(over H ∈ H) expected optimization error of A. In some
cases, we will be particularly interested in the setting in
which the variational algorithm is close to an optimum
and is trying to converge. To this end, it is helpful to
define A to be a δ-vicinity algorithm with respect to H if
A only queries the oracle with descriptions of variational
states in the δ-optimum of H; this defined to be the set
of states |θ〉 such that 〈θ|H|θ〉 − λmin(H) ≤ δ for some
H ∈ H.
We now introduce the parameterized family of objec-

tive observables which we use to prove our sample com-
plexity separation. First, for any δ ∈ R and v ∈ {−1, 1}n,
define the n-qubit observable

Hδ
v
··= −

n
∑

i=1

[

sin
(π

4
+ viδ

)

Xi + cos
(π

4
+ viδ

)

Zi

]

,
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where Xi (Zi) denotes the Pauli X (Z) operator acting
on qubit i. Now, for a fixed parameter ǫ > 0 we define

δ(ǫ) ··=
√

45ǫ
n and

Hǫ
n
··= {Hδ(ǫ)

v : ∀v ∈ {−1, 1}n}.

We prove lower and upper bounds on the query cost of
finding a low-energy state w.r.t. observables in of the
family Hǫ

n.
Lower bounds.—We now state our lower bound for

zeroth-order variational algorithms. (The numerical con-
stants are chosen for ease of proof and have not been
carefully optimized.)

Theorem 1 (Lower bound for zeroth-order methods).
For any n > 15 and ǫ < 0.01n, let A be any zeroth-order

100ǫ-vicinity algorithm for the family Hǫ
n that makes T

queries to the oracle. Then, if Err(A,Hǫ
n) ≤ ǫ, it must

hold that T ≥ Ω(n
3

ǫ2 ) where the implicit factor is some

fixed constant.

The proof of Theorem 1 is information-theoretic, and
may be found in Section IV of the Supplemental Material
[13]. We choose a set M ⊂ Hǫ

n that is both large and
has well-separated points, then run A on a randomly cho-
sen H ∈ M. Since the points in M are sufficiently well
separated, if Err(A,Hǫ

n) ≤ ǫ, we can unambiguously dis-
tinguish which H ∈ M we are given. On the other hand,
if M is large then learning this information means that
the oracle outputs must have large mutual information
with the identity of H (via Fano’s inequality [37]; indeed
our strategy is also known as Fano’s method). Finally, in
the vicinity of the ground state the output distributions
produced by zeroth-order queries to OH and OH′ for any
H,H ′ ∈ M have small relative entropy, which implies an
upper bound on the amount of mutual information ob-
tained by each oracle query. Putting this together yields
a lower bound on the number of queries needed to opti-
mize Hǫ

n with error ǫ.
Theorem 1 gives a lower bound for zeroth-order vari-

ational algorithms restricted to the vicinity of the opti-
mum. Upon lifting these two restrictions, we obtain a
more general lower bound following a similar proof strat-
egy. The primary difference is that now, for this unre-
stricted case, the oracle output distributions associated
with two different H,H ′ ∈ M may be more distinguish-
able, yielding a weaker lower bound.

Theorem 2 (General lower bound). For any n > 15, ǫ <
0.01n, and k ∈ Z+, suppose A is a kth-order algorithm

that makes T queries and satisfies Err(A,Hǫ
n) ≤ ǫ. Then

T ≥ Ω(n
2

ǫ ).

Upper bounds.—The arguments above indicate that
zeroth-order measurements taken in the vicinity of the
optimum may be less informative in some sense than
more general measurements. A priori, it is unclear if this

Convexity of f(θ) Zeroth-order SGD SMD

Convex min

(

p32E2

ǫ2
,
p2E4(R2/r2)2

ǫ4

)

R2
2‖~Γ‖21
ǫ2

R2
1‖~Γ‖22
ǫ2

λ2-strongly con-
vex w.r.t. ‖ · ‖2

min

(

p32E2

ǫ2
,
p2E4(R2/r2)2

ǫ4

)

‖~Γ‖21
λ2ǫ

p‖~Γ‖22
λ2ǫ

λ1-strongly con-
vex w.r.t. ‖ · ‖1

min

(

p32E2

ǫ2
,
p2E4(R2/r2)2

ǫ4

)

‖~Γ‖21
λ1ǫ

‖~Γ‖22
λ1ǫ

TABLE I. Rigorous upper bounds for the query complexity
of optimizing f(θ) to precision ǫ in a convex region X ⊂ R

p

contained in a 2-ball of radius R2, contained in an 1-ball of
radius R1, and containing a 2-ball of radius r2, using zeroth-
order strategies or gradient measurements in conjunction with
SGD or SMD with an l1 setup. Constants, logarithmic fac-
tors, and some Lipschitz constants are hidden for clarity (see
[13] for full details and caveats). For the family Hǫ

n, and with
respect to the variational ansatz used in our proof of Theo-
rem 3, we have p = n, E = Θ(n), Γi = Θ(1), R2 = Θ(

√
ǫ),

R1 = Θ(
√
ǫn), r2 = O(

√

ǫ/n), λ2 = Θ(1), and λ1 = Θ(1/n).

observation translates into an algorithmic advantage for
variational algorithms making gradient measurements.
To this end, we show that a first-order algorithm based on
SGD can attain an upper bound which matches the lower
bound of Theorem 2, even when restricted to the vicinity
of an optimum. Hence, not only does this show that a
first-order algorithm can converge faster than any zeroth-
order algorithm in the vicinity of the optimum, but it also
shows that for the specific problem under consideration,
the first-order SGD-based algorithm is in fact essentially
optimal among all kth-order algorithms for any k. This
result is stated as the following theorem.

Theorem 3 (Upper bound for first-order methods). For

any ǫ < 0.01n, there exists a first-order, 100ǫ-vicinity

algorithm A based on SGD that makes O(n
2

ǫ ) queries and
achieves an error Err(A,Hǫ

n) ≤ ǫ.

En route to showing this theorem, we first obtain gen-
eral upper bounds on the query cost of variational algo-
rithms in the vicinity of a local minimum, reported in
Table I. More precisely, the bounds are applicable when
the induced objective function f is known to be convex
within some fixed convex feasible set. They are obtained
by combining objective function or gradient estimators
with known convergence results [20] from the theory of
stochastic optimization. In particular, the SGD bounds
utilize the estimator ĝ(θ) defined previously (note that
ĝ(θ) can be constructed from a single first-order ora-
cle query). While Theorem 3 will only require an SGD
bound, we also report bounds based on stochastic mirror
descent (SMD), as well as (for comparison) zeroth-order
algorithms. The zeroth-order bounds, based on [38, 39],
are the best rigorous bounds we are aware of, but would
likely be outperformed in practice. SMD [20] is a non-
Euclidean generalization of SGD; the SMD bounds we
report are based on taking the norm in parameter space
to be the 1-norm rather than the Euclidean 2-norm, as
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is the case for SGD. Further background on these algo-
rithms, motivation for considering SMD, and full deriva-
tion of the bounds in Table I may be found in Section III
of the Supplemental Material [13].

We now describe an algorithm A attaining the upper
bound in Theorem 3. We refer the reader to Section IV of
the Supplemental Material [13] for full technical details of
the argument. Start by fixing the following n-parameter
variational ansatz Θ:

|θ1, . . . ,θn〉 ··= exp



−i

n
∑

j=1

(θj + π/4)Yj/2



 |0〉
⊗n

.

This parameterization has a simple geometric inter-
pretation: |θ〉 is the product state on n qubits for
which the polarization of qubit j is sin(π/4 + θj)x̂ +
cos(π/4 + θj)ẑ.

Now, consider some objective observable Hδ
v ∈ Hǫ

n.
The induced objective function f(θ) is found to be
f(θ) = 〈θ|Hδ

v |θ〉 = −
∑n

i=1 cos(θi − δvi). Let B∞(δ) ⊂
R

n denote the ∞-ball of radius δ centered at the ori-
gin. That is, B∞(δ) = {θ : max(θ1,θ2, . . . ,θn) ≤
δ}. Note that the ground state of Hδ

v is the state
|δv1, δv2, . . . , δvn〉, and hence corresponds to a parameter
inside the set B∞(δ) for any choice of v. Furthermore,
the set of states associated with B∞(δ) is contained in the
100ǫ-optimum of Hǫ

n, and the induced objective function
f(θ) is 0.01-strongly convex w.r.t. the 2-norm (strong
convexity is reviewed in the Supplemental Material). It
is also straightforward to show that, for this problem,
‖~Γ‖1 = O(n). Theorem 3 now follows from the SGD up-
per bound for strongly convex functions in Table I, taking
B∞(δ) as the feasible set. We note that SMD with a 1-
norm setup achieves an identical performance for this toy
problem, up to logarithmic factors.

Conclusion.—Our results provide theoretical evidence
that taking analytic gradient measurements in varia-
tional algorithms can be advantageous, supporting recent
gradient-based proposals. We expect the rigorous upper
bounds we report in Table I may be helpful in guiding
expectations on the performance of gradient-based varia-
tional algorithms for particular classes of problems, even
if more heuristic algorithms may be used in practice. To
this end, an interesting direction for future work is to
understand how the parameters appearing in Table I be-
have for various problems of practical interest. Further
discussion, open questions, and comparison with the lit-
erature may be found in Section V of the Supplemental
Material.
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