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The number of compact structures of a single condensed polymer (SCP), with similar free energies,
grows exponentially with the degree of polymerization. In analogy with structural glasses (SGs), we
expect that at low temperatures chain relaxation should occur by activated transitions between the
compact metastable states. By evolving the states of the SCP, linearly coupled to a reference state,
we show that, below a dynamical transition temperature (Td), the SCP is trapped in a metastable
state leading to slow dynamics. At a lower temperature, TK 6= 0, the configurational entropy
vanishes, resulting in a thermodynamic random first order ideal glass transition. The relaxation
time obeys the Vogel-Fulcher-Tamman law, diverging at T = T0 ≈ TK . These findings, accord
well with the random first order transition theory, establishing that SCP and SG exhibit similar
universal characteristics.

Experiments suggest that glass-like behavior should be
expected in chromosome dynamics [1–3], collapse kinet-
ics of polymers [4], and intrinsically disordered proteins
[5]. Dynamics [6–8], and phase behavior [9–11] of single
polymers exhibit glassy behavior upon cooling or com-
pression [12–14]. However, it is unknown whether the
glass transition in a single polymer is governed by the
same physical principles that describe their macroscopic
counterparts.

Single condensed polymer (SCP) should exhibit glass
like behavior because their phase space structure satis-
fies all the requirements for observing slow dynamics. At
temperature (T ) below the coil-to-globule temperature
Tθ the number of compact structures or states, with sim-
ilar free energies, scales exponentially withN [15]. At low
T transition between compact structures can only occur
by activated transitions. Because the physical picture for
a SCP is the same as in the structural glass transition
(SGT), the dynamics of the SCP should be described by
theories developed for bulk glassy systems. We anticipate
that the SCP dynamics, over a wide range of tempera-
tures, can be understood within the framework of the
Random First Order Transition (RFOT) theory. That
this is so is the main conclusion of this work.

Let us describe the salient aspects of the energy land-
scape of the SCP and liquids that undergo the SGT. The
SGT dynamics is well-described by the RFOT theory
[16], based on spin glass models [17–19]. An ingredient in
the RFOT theory for the SGT is the emergence of an ex-
ponentially large number of metastable states [20] below
the dynamic transition temperature, Td [17, 18]. The free
energy barrier, ∆F ‡, between the metastable states is re-
lated to the configurational entropy, Sconf as ∆F ‡ ∼ S−1conf

[16]. Since Sconf decreases as T decreases, ∆F ‡ increases,
resulting in a significant increase in the structural relax-
ation time. RFOT theory predicts that Sconf vanishes at
an ideal glass transition temperature, TK < Td, at which
a thermodynamic random first-order transition, without
latent heat, occurs from a super cooled liquid to an ideal
glass.

To affirm the predictions of the RFOT theory in the
SCP, we use the Franz-Parisi (FP) method [21, 22], which
involves coupling two copies of the system through a field
with strength ε. FP showed [23–27] that an order pa-
rameter, measuring the structural similarity between the
states, exhibited first order transition at non-zero ε only
when a large number of metastable states emerge.

We used a bead-spring model [28] for a polymer with
N = 128 weakly attractive Lennard-Jones (LJ) particles
linearly connected by a harmonic potential (section I of
the Supplementary Information (SI) [29]). Parameters
of the potentials are chosen to suppress crystallization
(section II of the SI). The model in which solvent effects
are implicitly taken into account by varying the strength
of the interaction between the monomers captures the
universal dynamic and static properties of polymeric sys-
tems [30]. We adopted this well-tested approach to inves-
tigate universal aspect of glass formation in a single con-
densed polymer. Surprisingly, minimal models quantita-
tively reproduce the scattering profiles of disordered pro-
teins [31]. These observations justify the polymer model
used here.

Following FP (Figure 1), we created two replicas of the
SCP at the same T . Replica 1 in Figure 1 is a fixed ref-
erence conformation ({~r0}), chosen from an equilibrium
ensemble, and serves as a quenched random field. The
conformation of {~r} in Replica 2 (Figure 1) is evolved
using Monte Carlo simulation by coupling it to Replica
1 (Figure 1). The energy Eε({~r}|{~r0}) of the coupled
replicas is,

Eε({~r}|{~r0}) = E({~r})−NεQ̂stat({~r}, {~r0}), (1)

where E({~r}) is the potential energy of the SCP in
Replica 2, ε is the strength of the external field, and
Q̂stat({~r}, {~r0}) measures the static structural similarity
between {~r} and {~r0}.

We used contact maps, two dimensional representa-
tions of a given structure of the SCP, to calculate Q̂stat.
Two non-covalently linked monomers are in contact if the
distance between them is less than Rc = 1.4σ, the first
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FIG. 1. Implementation of the Franz-Parisi (FP) method. The equilibrium conformation in Replica 1 is one of the
exponentially large number of metastable sates, which is coupled to Replica 2. The panels next to the snapshot are the contact
maps in the metastable states. The overlap between replicas 1 and 2 measures the static structural similarity (blue and red for
example).

minimum in the radial distribution function (section II
in the SI). Panels next to the snapshots in Figure 1 are
examples of the contact maps.

The static overlap function Q̂stat is calculated using,

Q̂stat({~r}, {~r0}) =

∑
(i,j)′ qij({~r})qij({~r0})∑

(i,j)′ qij({~r0})
, (2)

where qij({~r}) is the contact function. It is unity if i
and j monomers are in contact and zero otherwise, and
(i, j)′ is the sum over all non-bonded pairs of monomers.
The average of the static order parameter 〈Q̂stat〉 was
obtained by taking a Boltzmann-weighted average over ~r
and ~r0; we first performed a thermal average of Q̂stat with
{~r0} fixed, and then a disorder average over various {~r0}
was calculated to account for the fluctuations caused by
differences in {~r0} (details are in section I of its SI and the
relation to the Random Field Ising Model is given in sec-
tion V). If {~r} and {~r0} are identical, Q̂stat({~r}, {~r})=1,
resulting in 〈Q̂stat〉=1. If the replicas are totally uncor-
related, 〈Q̂stat〉 is the average contact probability 〈qij〉,
which is ' 0.13 for the parameters used in the simula-
tions. From Eqs (1) and (2), it follows that Qstat varies
as a function of ε. When the external field strength,
ε, is sufficiently large, {~r} is biased to {~r0}, such that
〈Q̂stat〉 ' 1. If ε decreases to 0, {~r} is independent of
{~r0}, resulting in 〈Q̂stat〉 ' 〈qij〉.

The changes in 〈Q̂stat〉 with ε 6= 0 should have the
characteristics of first order transition only if metastable
states are probed. Since all the metastable states are gen-
erated at the same thermodynamic condition (the same
T and N), they are equivalent. The individual free en-
ergy of metastable α is Fα. The canonical free energy
Ftot is less than the component averaged free energy,∑
α PαFα, where Pα is the probability of being in the

state α [16, 32, 33]. The difference between the two is
TSconf, the entropic gain arising from an exploration of
all possible states, Ftot = Fα−TSconf. Thus, if ε is strong
enough to compensate for the entropic penalty, the SCP
in Replica 2 would be trapped in a single metastable
state, such that 〈Q̂stat〉 = Qglass ' 1. Otherwise, it could
explore all possible metastable states over time, resulting
in 〈Q̂stat〉 equalling Qliquid = 〈qij〉. Thus, at the criti-
cal value of ε = εc where Nεc(Qglass −Qliquid) ' TSconf,

〈Q̂stat〉 should change discontinuously between Qglass and
Qliquid, which would be a signature of a first order transi-

tion. By showing Q̂stat exhibits the first-order-like transi-
tion at ε 6= 0, we can confirm the existence of metastable
states in the SCP.

In the upper panel of Figure 2 (A), 〈Q̂stat〉 is plot-
ted as a function of ε for various T (the open symbols).
As expected, 〈Q̂stat〉 decreases from '1 to 〈qij〉 ' 0.13
as ε decreases to 0. The static susceptibility, χstat(ε) =
N(〈Q̂2

stat〉 − 〈Q̂stat〉2), has a peak at the value of ε where
〈Q̂stat〉 changes drastically (the dashed vertical lines in
Figure 2 (A)). The width of the peaks decreases and the
amplitudes increase as T decreases, reflecting a sharp
change in 〈Q̂stat〉 at T . Such sharp changes in 〈Q̂stat〉
and χstat(ε) provide evidence for the first-order like phase
transition in the presence of the coupling field. We es-
tablish in section III of the SI that the first order nature
of the transition is more pronounced as N increases.

Next, we confirm that the abrupt change in 〈Q̂stat〉
reflects a regular first order transition. In the first
order transition, the minimum in the free energy FQ
as a function of Q̂stat changes discontinuously at the
phase transition point. The free energy, FQ, is calcu-
lated from the distribution P (Qstat|{~r0}) = 〈δ(Qstat −
Q̂stat({~r}, {~r0}))〉T , i.e., −NFQkBT

= 〈lnP (Qstat|{~r0})〉D
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FIG. 2. Phase behavior of Q̂stat. (A) Average 〈Q̂stat〉 (the upper panel) and susceptibility χstat(ε) (the lower panel) of
the order parameters with respect to ε for various T . The vertical dashed lines are the positions of ε where χstat(ε) has the
maximum value. The solid lines represent the position of Qstat where FQ in (B) has the minimum value. (B) FQ for various ε

at T=0.35. FQ in the graph is shifted by its minimum value. (C) T − ε phase diagram of Q̂stat. The open and filled symbols
represent T of εc for T < Td and T ≥ Td, respectively. The solid line is a linear fit for T < Td. The black dashed line denotes
the position of Tθ. The open green star denotes T0. The inset is the same phase diagram at 0 ≤ ε ≤ 0.9. (D) Fε as a function of
ε for various T . Fε is shifted by Fε=0. The slopes of the dashed and dashed-dotted lines are −0.13 and −0.93, respectively. (E)
TSconf/N as a function of T . The solid lines are linear fits. The yellow and green open symbols represent T0 and y intercept
of the solid line in (C), respectively. In the inset, we magnify the graph near the x intercepts of the linear fits.

[34], where 〈· · · 〉T and 〈· · · 〉D are the thermal and dis-
order averages of the property, respectively (see the def-
initions of P (Qstat|{~r0}), 〈· · · 〉T , and 〈· · · 〉D in Section
I of the SI). In Figure 2 (B), FQ at T = 0.35 is plot-
ted as a function of Qstat for various ε. When ε = 1,
FQ has minimum at Qstat ' 0.93, indicating that {~r}
is pinned around the state associated with {~r0}. As ε
decreases to 0, the minimum shifts to Qstat = 0.13. At
ε = 0.574, where χstat has a maximum, FQ has two min-
ima at Qstat ≈ 0.34 and Qstat ≈ 0.84. The two different
states coexist at ε = 0.574, which leads to a discontin-
uous change in the order parameter. In Figure 2 (A),
we plotted the minimum position of FQ as a function
of ε for various T (the solid lines). The minimum posi-
tion changes discontinuously at ε where the fluctuation
in Q̂stat is maximized, revealing the first order nature of
the transition.

We arrive the same conclusion from the Ehrenfest clas-
sification, according to which dFε/dε should be discontin-
uous at the transition point. Here, Fε is the free energy
as a function of ε, which is calculated from FQ using the

Legendre transformation, Fε = FQ− ε 〈Q̂stat〉, where ε is
equal to ε = ∂FQ/∂Qstat [35]. Figure 2 (D), displaying
Fε as a function of ε at various T , shows a discontinuous
change in the slopes (= dFε/dε) between -0.13 and -0.93
(the dashed and dashed-dotted lines, respectively), a sig-
nature of the first order transition. Since 〈Q̂stat〉 = −dFεdε ,
we define the effective order parameters in the two states

as Qliquid = 0.13 and Qglass = 0.93. Thus, the discontin-
uous change in the slope in Figure 2 (D) corresponds to
the discontinuous change in 〈Q̂stat〉 between Qliquid and
Qglass. Figures 2 (B) and (D) confirm that the first order

transition in Q̂stat occurs with a change in ε, thus verify-
ing the existence of the metastable states in the SCP.

RFOT theory predicts that the metastable states, sep-
arated by barriers, should cease to exist above the dy-
namical transition temperature Td, which implies that
the first-order transition nature of Q̂stat should disappear
at T > Td. We found that 〈Q̂stat〉 changes continuously
with ε when T ≥ 1.8 (see section IV of the SI). The coil-
to-globule temperature is Tθ = 2.3 > Td (section II in
the SI). Thus, the equilibrium collapse occurs before the
dynamical transition, implying that the dynamics of the
SCP in the temperature Td ≤ T ≤ Tθ can be described
by the standard polymer theory. Only below Td the dy-
namics is determined by activated transitions between
equivalent compact structures.

The phase behavior in Figure 2 (A) is summarized
in Figure 2 (C). The phase boundaries (εc, Tc) are as-
sociated with the peak in χstat at a given T (the open
symbols in the graph). At T < Td (the open symbols),
〈Q̂stat〉 changes discontinuously, and when T > Td (the
filled triangles), it changes continuously. Above Tθ (the
black dashed line), εc is less dependent on T . Because Tc
changes linearly with εc (when T < Td), we extrapolate
the phase boundary to ε = 0 (the blue solid line). The y
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intercept in the linear fit is Tc at ε = 0, which has a pos-
itive value at ε = 0 (Tc(ε = 0) = 0.14). This signals that
a thermodynamic transition would occur at the non-zero
temperature when ε = 0, implying that the free energy of
individual metastable states Fα is equal to the total free
energy Ftot at a finite temperature even without external
fields, which is only possible if Sconf = 0 at Tc(ε = 0).

We investigated if Sconf vanishes at Tc(ε = 0). Us-
ing two methods [26, 34], Sconf at ε = 0 is estimated as
a function of T . Since the first order transition occurs
when the entropic gain (TSconf) is compensated by the
energetic contribution of the fields (Nεc(Qglass−Qliquid)),
we estimated the configurational entropy using (Method
1) [26], TSconf/N = εc[Qglass − Qliquid]. A more natural
way is to calculate TSconf as the difference between Fα
and Ftot, corresponding to FQglass

and FQliquid
at ε = 0,

respectively. Thus, Sconf can also be calculated using
(Method 2),

TSconf/N = FQglass
(ε = 0)− FQliquid

(ε = 0). (3)

Figure 2 (E) shows TSconf/N (the open symbols) as a
function of T using Methods 1 and 2. Linear extrapola-
tion of TSconf/N (the linear lines) shows that Sconf van-
ishes at a similar non-zero value of T , regardless of the
method used. It should be emphasized that the numeri-
cal value of the temperature is consistent with Tc(ε = 0)
(the open yellow star). This confirms that it is because
the configurational entropy vanishes that the thermody-
namic transition occurs at Tc(ε = 0).

What is the nature of the thermodynamic transition at
Tc(ε = 0)? It corresponds to an ideal glass transition of
the SCP. Most importantly, we note from Eq (3), TSconf

is the energy difference between the two states, which
accounts for the latent heat at the transition. Therefore,
Figure 2 (E) shows that as T approaches Tc(ε = 0), the
latent heat decreases and vanishes at Tc(ε = 0). This
implies that at Tc(ε = 0), the SCP exhibits a random
first order transition from liquid to an ideal glass without
releasing latent heat but with a discontinuity in Q̂stat.
Hence, Figures 2 (C) and (E) show that the ideal glass
transition in the SCP at TK = Tc(ε = 0) 6= 0 is truly the
analogue of TK in bulk glasses.

There ought to be consistency between thermodynamic
random first order transition and dynamics [36]. To in-
vestigate the dynamics of the SCP, we performed dy-
namic MC simulations (details in the SI). The time de-
pendent overlap function Qdyn(t) is,

Qdyn(t) =

∑
(i,j)′ qij(t)qij(0)∑

(i,j)′ qij(0)
, (4)

where qij(t) is the contact function of a single polymer
at time t; Qdyn(t) quantifies how rapidly the contact
map loses memory of the initial pattern. By definition
Qdyn(t = 0) = 1. As t → ∞, the SCP loses mem-
ory of the structural correlation, and thus the pattern

(A) (B)

(C) (D)

t

FIG. 3. Glassy dynamics in the SCP. (A) Time average
of time dependent overlap function 〈Qdyn(t)〉t and (B) sus-
ceptibility χdyn(t) for various T . (C) Dependence of τα on
T (the open symbols). The dashed line is the VFT fit. (D)
Relation between τα and Sconf.

of the contact map also becomes independent of the ini-
tial state. Consequently, Qdyn(t) decays to 〈qij〉.

Figure 3 (A) shows the time average of Qdyn(t)
(〈Qdyn(t)〉t) as a function of t at different T . As T de-
creases from 1.1 to 0.35, 〈Qdyn(t)〉t decays more slowly
with the decay time constant increasing by a few or-
ders of magnitude. Figure 3 (B) shows that heights
and timescales of the peak in the dynamic susceptibil-
ity, χdyn(t) = N [〈Qdyn(t)2〉t − 〈Qdyn(t)〉2t ], increase as
T decreases, implying that the structural relaxation be-
comes heterogeneous as T decreases [37–39]. Figures 3
(A) and (B) reveal that the sluggish structural relaxation
in the SCP is accompanied by enhanced dynamic hetero-
geneity, an important dynamic property of glassy liquids
[40, 41].

The structural relaxation time τα (Figure 3 (C)), calcu-
lated using 〈Qdyn(t = τα)〉t = 0.3, increases by more than
two orders of magnitude when T decreases from 1.1 to
0.35 (the open symbols). The dramatic increase in τα in
the SCP, metallic [42], colloidal systems [43], and molec-
ular glasses [44], is described well by the Vogel-Fulcher-
Tamman (VFT) equation, τα = τ0 exp[ D0T0

T−T0
], where τ0,

D0 and T0 are fitting parameters. We fit τα as a function
of T to the VFT equation (the dashed line in Figure 3
(C)), yielding T0 = 0.1, (the green open symbols in Fig-
ure 2 (C) and (E)). The value of T0 is close to TK .

The divergence of τα is associated with a decrease in
Sconf (ln τα ∼ 1/TSconf [16]). Figure 3 (D), showing ln τα
as a function of [TSconf/N ]−1, obtained using Methods 1
and 2, shows that the increase in τα is closely related to
the decrease in sconf. Thus, the dynamics and statics of
the SCP are consistent with RFOT predictions.

Our findings show that the RFOT theory holds for a di-
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verse systems exhibiting changes from diffusive motion to
activated transitions as a control parameter is changed.
The requirement is the emergence of multiple metastable
states, separated by free energy barriers, below a charac-
teristic dynamical transition temperature. This feature
is shared by the SCP and myriad glass forming systems,
thus explaining the validity of the RFOT theory for con-
densed polymers.
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