
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Photon-Instanton Collider Implemented by a
Superconducting Circuit

Amir Burshtein, Roman Kuzmin, Vladimir E. Manucharyan, and Moshe Goldstein
Phys. Rev. Lett. 126, 137701 — Published 29 March 2021

DOI: 10.1103/PhysRevLett.126.137701

https://dx.doi.org/10.1103/PhysRevLett.126.137701


Photon-instanton collider implemented by a superconducting circuit

Amir Burshtein,1 Roman Kuzmin,2 Vladimir E. Manucharyan,2 and Moshe Goldstein1

1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
2Department of Physics, University of Maryland, College Park, MD 20742, USA

Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated con-
densed matter and high energy systems. However, their direct observation through collisions with
conventional particles has not been considered possible. We show how recent advance in circuit
quantum electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a
high-impedance transmission line, allows the observation of inelastic collisions of single microwave
photons with instantons (phase slips). We develop a formalism for calculating the photon-instanton
cross section, which should be useful in other quantum field theoretical contexts. In particular,
we show that the inelastic scattering probability can significantly exceed the effect of conventional
Josephson quartic anharmonicity, and reach order-unity values.

Introduction.— Instantons are time-localized solu-
tions to a system’s imaginary time equations of mo-
tion, describing quantum tunneling events. They typ-
ically bridge between symmetry-related configurations
and carry nontrivial topological indexes [1]. Instantons
play important roles in many areas of physics, ranging
from single-particle quantum-mechanical tunneling [1],
through transport in low dimensional superconductors
and superfluids (where they are also known as “phase
slips”, and can be thought of as vortices crossing the sys-
tem) [2–9], to determining the phase diagram [10] and
breaking of classical conservation laws [11, 12] in gauge
theories. Most of these studies concern thermodynamic
or transport properties. A more direct way to probe such
short-lived excitations would be through resonances they
may induce in the scattering cross sections or decay rates
of other more stable particles with which they interact.
However, such questions received much less attention, in
large part due to lack of relevant experiments.

Advances in the fabrication and control of supercon-
ducting circuits allow to monitor the dynamics of sin-
gle microwave photons. For example, recent experiments
have exposed unusual relaxation dynamics in a uniform
Josephson junction array, in which phase slips play an
important role [13]. However, their interpretation is com-
plicated due to the presence of disorder and offset charge
fluctuations [14–16]. It has recently been realized the-
oretically [17–27] that controllable quantum simulation
of many-body physics may be easier to achieve in “quan-
tum impurity” setups, leading to initial experiments [28–
32]. We thus study a single flux-tunable small Josephson
junction in the regime where the Josephson energy still
dominates (transmon qubit [33]), galvanically coupled to
an array of large junctions. The array acts as a trans-
mission line allowing microwave photons to controllably
scatter off the small junction [30]. The large Joseph-
son inductance makes the line wave impedance of the
order of the resistance quantum, hence the array screens
the effects of unwanted offset charges on the transmon
without completely suppressing phase slips there. From
a broader perspective, the large impedance amounts to
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FIG. 1. The studied system: (a) The full circuit; (b) A sim-
plified version. See the text for details.

an effective fine-structure constant of order unity [34],
ushering in unprecedentedly strong correlations. We will
show that a single photon propagating along the array
may excite a phase slip at the transmon and inelastically
convert into lower-frequency photons with a high proba-
bility, significantly larger than the conversion probability
due to the usual Josephson quartic nonlinearity [35]; this
effect could be measured via the resulting broadening of
the array modes [13]. For this we develop an extension
of the standard equilibrium instanton calculation [1] to a
scattering scenario, which could be useful in other fields.
We will now outline its main ingredients, deferring some
technical details to the supplemental material [38].

Model.— We concentrate on the setup realized in a
recent experiments [30, 39], corresponding to the elec-
tric circuit depicted in Fig. 1(a). It consists of a long
(length N � 1) two-leg array of superconducting is-
lands connected by strong Josephson junctions Eline

J with
large junction capacitance C line, negligible ground capac-
itance (not depicted), and intermediate inter-leg capac-
itance Cg. The large C line suppresses phase slips along
the arrays, allowing their treatment as classical trans-
mission lines. Except for this, C line could be ignored
below the array plasma frequency. The small ground ca-
pacitance pushes the leg-even modes to high frequencies,
decoupling them from the transmon. We may thus em-
ploy a simplified single-leg array model [Fig. 1(b)] for the
leg-odd degrees of freedom. The array capacitance to the



2

ground Cg and inductance L in Fig. 1(b) are the inter-leg
capacitance and twice the intra-leg Josephson inductance
in Fig. 1(a), leading to a Lagrangian

L =
C0φ̇

2
0

2
+EJ cos (2φ0)+

N∑
n=1

Cgφ̇
2
n

2
− (φn − φn−1)

2

2L
, (1)

where φn is in units of flux and we employ units where
e = 1 and ~ = 1, hence the flux quantum is Φ0 = h/2e =
π. The array spacing a will serve as the unit of length.

The array is terminated by a transmon qubit [33] (node
n = 0, blue elements in Fig. 1), a small SQUID whose
Josephson energy EJ is flux-tunable and much larger
than its charging energy, EC = 1/2C0. Hence, to lead-
ing order we may approximate its Josephson cosine by a
quadratic function [30]. Then Eq. (1) gives rise to eigen-
modes with dispersion ωk = 2v sin(k/2) ≈ vk, where
v = 1/

√
LCg, the array wave velocity divided by the ar-

ray spacing, is much larger than all other energy scales,
i.e., for all relevant modes k � π. The eigenmodes are
∝ sin(kn+ δk), where [38, Sec. SI.B]

δk = tan−1

(
Γ0ωk
ω2

0 − ω2
k

)
(2)

is the phase shift. Here ω0 =
√

8EJEC is the trasmon
LC frequency and Γ0 = 1/ZC0 = 4EC/πz is its elastic
broadening due to its coupling to the array, where Z =√
L/Cg is the array wave impedance and z = Z/RQ

(RQ = h/(2e)2 = π/2 is the superconducting resistance
quantum). For N � 1 the mode spacing is ∆ = πv/N ,
hence

∑
k →

∫∞
0

dω/∆.
Upon increasing EC/EJ the transmon nonlinearity

starts becoming significant. We will concentrate on the
regime where

√
EC/EJ is still small, and furthermore,

Γ0/ω0 � 1 (i.e.,
√
EC/EJ � z), so the transmon reso-

nance is well-defined [30]. In this regime the nonlinear-
ity manifests in two ways: (i) Expanding the Josephson
cosine gives rise to quartic nonlinearity, shifting ω0 by
−EC . It could also induce photon inelastic scattering,
but we will show later on that for realistic device param-
eters this effect could be subleading; (ii) The periodicity
of the cosine allows for instantons (phase slips). An in-
coming photon may excite a phase slip, and the resulting
voltage and current pulse may give rise to the emission
of photons with different frequencies. We will now study
in detail the latter inelastic effect.

Instanton calculation.— For a disconnected transmon
[first two terms of Eq. (1)] the classical instanton solu-
tion in imaginary time, describing a phase slip between
φ0(τ → −∞) = 0 and φ0(τ → ∞) = ±Φ0 = ±π, is

φ
(0)
0 (τ) = ±2 tan−1 (eω0τ ), or, in Fourier space, φ

(0)
0 (ω) =

±π/iω cosh (πω/2ω0) [1]. Here and below, the upper
(lower) sign corresponds to an instanton (anti-instanton).

The classical action S0 of the instanton, together with the
contributions of Gaussian fluctuations around it, give rise
to the transmon ground state charge dispersion λ0 (half
the width of the lowest Bloch band of the correspond-
ing Mathieu equation [33, 40]) in the WKB approxima-
tion [38, Sec. SI.A],

λ0 ≈
8√
π

(
8E3

JEC
)1/4

e−
√

8EJ/EC . (3)

We now incorporate the array to lowest order in Γ0/ω0.
Expanding the imaginary time action around the classical

isolated instanton solution [φ
(0)
0 (τ) as given above and

φ
(0)
n>0(τ) = 0] to second order in the deviation δφn =∑
k δφk sin(kn+ δk), one finds [38, Sec. SI.B]:

S = S0 +

∫
dω

2π


∣∣∣φ(0)

0 (ω)
∣∣∣2

2L
+
∑
k

Ck
2

(ω2 + ω2
k) |δφk(ω)|2

− sin(k + δk)− sin(δk)

L
φ

(0)
0 (−ω)δφk(ω)

]

−
∫

dτ
8EJ

cosh2(ω0τ)

[∑
k

sin(δk)δφk(τ)

]2

, (4)

where the capacitance of mode k is Ck ≈ NCg/2 for
N � 1. The very last term contributes to higher orders
in Γ0/ω0 and will be neglected henceforth. The classical
equations of motion for δφk result in

δφk(ω) ≈ 1

Ck(ω2 + ω2
k)

ωk cos δk
Z

φ
(0)
0 (ω), (5)

to leading order in k � 1. Plugging this back into the
action [41] gives [38, Sec. SI.B]

δS =
1

2

∑
k

f̃2
k , f̃k =

√
2∆

zωk

1

cosh
(
π
2
ωk

ω0

) , (6)

leading to a renormalization λ0 → λ0e
−

∑
k f̃

2
k/2. For z >

1 instantons are relevant, resulting in an emergent scale,
λ∗ ∼ λ0(λ0/ω0)1/(z−1), below which instanton effects are
nonperturbative [2]; we limit ourselves to higher energies.

Within the approximations we employ, the contribu-
tion of a single instanton to a multipoint correlation
of the φk is given by the corresponding classical solu-

tion [41], multiplied by λ0e
−

∑
k f̃

2
k/2/2. By the LSZ

reduction formula [42, 43], this correlation with its ex-
ternal single-particle legs amputated gives the T -matrix
element between Nin incoming photons with momenta
k′1, k

′
2, · · · , k′Nin

and Nout outgoing photons with mo-
menta k1, k2, · · · , kNout [38, Sec. SI.C]:
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T k
′
1,k
′
2,··· ,k

′
Nin

k1,k2,··· ,kNout
=

∆

2π
lim

{ω′j→iωk′
j
}

{ωj→−iωkj
}

Nin∏
j=1

Ck′j

(
ω′2j + ω2

k′j

)
√

2Ck′jωk′j

Nout∏
j=1

Ckj

(
ω2
j + ω2

kj

)
√

2Ckjωkj

〈
Nin∏
j=1

φk′j (ω′j)

Nout∏
j=1

φkj (ωj)

〉
1−instanton

= (∓1)Nin(±1)Noutfk′1fk′2 · · · fk′Nin
fk1fk2 · · · fkNout

λ0

2
e−

∑
k f̃

2
k/2 (7)

with

fk =

√
2∆

zωk

ω2
0 − ω2

k

sin
(
π
2
ω0−ωk

ω0

)√
(ω2

0 − ω2
k)

2
+ (Γ0ωk)2

, (8)

being the “form factor” of the instanton in the photon
modes basis. Note that it is finite at the resonance fre-
quency ω0 but still peaked there. It rises towards low fre-
quencies (assumed higher than λ∗); this reflects the fact
that an instanton involves a shift of phases along the en-
tire array, hence couples well to low-k modes. Thus, pro-
cesses in which a nearly resonant photon scatters into one
nearly resonant photon and several low energy photons
(whose number is controlled by z) will play an important
role. Note also that fk diverges at higher odd multiples
of ω0, which are nonlinear resonances broadened only at

higher order in Γ0. In relevant experiments [30] these
will anyway be close to EJ , i.e., outside the instanton
regime, hence we will limit ourselves here to lower fre-
quencies. Adding up the contribution of the instantons
and the anti-instantons eliminates processes involving an
odd number of photons.

Let us consider processes in which an additional pho-
ton with the specific frequency ωk is included among ei-
ther the incoming or outgoing photons. Combining the
square of the T -matrix elements just obtained with the
appropriate Bose-Einstein factors corresponding to spon-
taneous and stimulated emission as well as stimulated
absorption, gives the total rate Γin

k of the inelastic decay
(minus creation) of a single incoming photon at k [38,
Sec. SI.D] (the inelastic scattering probability per col-
lision is 2πΓin

k /∆, while ωk/Γ
in
k is the experimentally-

measurable quality factor of mode k [30]) [44],

Γin
k =

λ2
0

2
f2
ke
−

∑
k′ f̃

2
k′−2

∑
k′ f

2
k′nB(ωk′ )

∑
Nout,Nin

∑
k1<···<kNout ,

k′1<···<k
′
Nin

f2
k1 · · · f2

kNout
f2
k′1
· · · f2

k′Nin

(1 + nB(ωk1)) · · · (1 + nB(ωkNout
))×

nB(ωk′1) · · ·nB(ωk′Nin
)2π

[
δ
(
ωk + ωk′1 + · · ·+ ωk′Nin

− ωk1 − · · · − ωkNout

)
− {ωk → −ωk}

]
, (9)

The probability of a process not involving photons with frequency ωk′ decreases when such photons are present, due
to the increased probability of their emission or absorption. This is accounted for by the factor e−2

∑
k′ f

2
k′nB(ωk′ ) [38,

Sec. SI.D].
Upon expressing the delta functions via their Fourier representations, the summations over Nin,out and the ks can

be recognized as the Taylor series of an exponent. All in all we find that Γin
k = 2f2

k=ΠR(ωk), where

ΠR(ω) = −λ2
0

∞∫
0

dt sin(ωt) exp

(
−
∑
k′

{
f2
k′
[
(1 + nB(ωk′))(1− e−iωk′ t) + nB(ωk′)(1− eiωk′ t)

]
+ f̃2

k′ − f2
k′

})
, (10)

is the photon retarded self energy, whose imaginary part gives the total inelastic conversion (absorption minus emission)
rate of energy ω into any photon combination. Using it, one may write down more refined rates; for example, the net
rate of creation of photons at k′ due to processes involving an incoming photon at k is

Γin
k′|k = 2f2

kf
2
k′ {=ΠR (ωk − ωk′) [(1 + nB(ωk′))(1 + nB(ωk − ωk′))− nB(ωk′)nB(ωk − ωk′)]

+=ΠR (ωk + ωk′) [(1 + nB(ωk′))nB(ωk + ωk′)− nB(ωk′)(1 + nB(ωk + ωk′))]} , (11)

which accounts for processes in which photons at k, k′ are, respectively, absorbed-emitted, emitted-absorbed,
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FIG. 2. Parameter dependence of the inelastic scattering probability of a single incoming photon with frequency ωk by a single
phase slip, Eqs. (10)–(11). (a) On-resonance (mode k0 = ω0/v) total probability 2πΓin

k0
/∆ as function of ω0/Γ0 for several

values of z at T = 0 {using the full Mathieu expression for λ0 [33, 40], rather than the approximate Eq. (3) [38, Sec. SI.A]}.
(b) The distribution of inelastically generated photons Γin

k′|k/Γ
in
k at ωk = ω0, ω0 ± Γ0 for z = 2 and Γ0/ω0 = 0.2. (c,d) T = 0

resonance lineshape at (c) z = 2 and different Γ0/ω0 or (d) Γ0/ω0 = 0.2 and different z. A simple Lorentzian with width Γ0

is also plotted for comparison. (e) Temperature dependence of the on-resonance probability for Γ0/ω0 = 0.05 and different z.
(f) Ratio between the T = 0 on-resonance probabilities due to the instantons and due to the quatric nonlinearity, Eq. (16),
showing that the former may dominate by several orders of magnitude for not-too-small Γ0/ω0 and z & 1.

emitted-emitted, or absorbed-absorbed, with appropri-
ate signs to obey an energy conservation sum rule,
ωkΓin

k =
∑
k′ ωk′Γ

in
k′|k. The last couple of equations are

the central results of this work. To recap, they ap-
ply for any ωk, ωk′ between λ∗ and 3ω0, provided that
λ∗ � max(Γ0, T ) � ω0 and EC � EJ . The single-
instanton approximation further requires 2πΓin

k /∆ . 1.

Inelastic rate behavior.— We exemplify the parameter
dependence of the inelastic rate in Fig. 2. To better un-
derstand its behavior, it is useful to study some limits [38,
Sec. SI.E]. First, at T = 0 and low frequencies ω � ω0

one may approximate fq ≈∼
√

2∆/zωq in Eq. (10), lead-
ing to [45]

ΠR(ω) ≈ π

Γ(2/z)

λ2
0

ω

(
ω

ωc(z)

)2/z

, (12)

where Γ(x) is the gamma function [40], and the effective
cutoff ωc(z) ≈ 0.9ω0 is z independent for z & 1.

Let us now turn to the scattering of nearly-resonant
photons, ω ≈ ωk, starting with T = 0. As the spectrum
of inelastically-emitted photons in Fig. 2(b) exemplifies,
for z & 1 and Γ0/ω0 → 0 the dominant process involves
one emitted photon at ω′k ≈ ωk, while the other photons

carry low energy of order Γ0, hence

2πΓin
k′|k

∆2
≈ 2λ2

1

Γ(2/z)ωc

(
ωk − ωk′

ωc

)2−z
z∏
q=k,k′

Γ0

2

(ω0 − ωq)2 +
(

Γ0

2

)2 ,
(13)

where λ1 = −
√

27EJ/ECλ0 is the charge dispersion of
the first excited level of an isolated transmon [33]. Sum-
ming over k′ one obtains on resonance (mode k0 = ω0/v),

2πΓin
k0

∆
≈ π(ω0/ωc)

2/z

Γ(2/z) sin(π/z)

λ2
1

(Γ0/2)2

(
Γ0/2

ω0

)2/z

. (14)

The charge dispersion λ0 decreases fast with ω0, mask-
ing the corresponding increase in the number of possi-
ble decay channels contributing on-resonance [Fig. 2(a)];
this serves to distinguish this processes from parasitic
effects, such as dielectric loss, which display the oppo-
site behavior [13]. We further see that the inelastic
scattering probability can approach order unity in the
recently-achieved regime of effective fine-structure con-
stant z & 1 [13, 30, 46]. The increase in number of chan-
nels with frequency is seen in an asymmetry of the inelas-
tic resonance lineshape [Fig. 2(c,d)]; For |ωk − ω0| � ω0
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one has

Γin
k

Γin
k0

≈


2 sin

(
π
z

) ( Γ0/2
ωk−ω0

)3−2/z

, ωk − ω0 � Γ0,

(Γ0/2)2

(ω0−ωk)2+(Γ0/2)2 , |ωk − ω0| . Γ0,

1−2/z
cos(π/z)

(
Γ0/2
ω0−ωk

)4−2/z

, ω0 − ωk � Γ0.

(15)

Finally, let us note that temperature suppresses coherent
quantum phase slips (particularly for z > 1, when they
are relevant [2]) but gives rise to scattering by thermal
photons, hence could either decrease or increase the de-
cay rate, depending on z, as shown in Fig. 2(e). Similar
expressions to Eqs. (13)–(15) can be obtained via an ef-
fective Hamiltonian tailored to describe this particular
class of processes [47], though that approach cannot give
the value of ωc.

Quartic nonlinearity.— Let us now briefly discuss in-
elastic photon scattering by more mundane nonlineari-
ties, coming from the Taylor expansion of the transmon
Josephson cosine. To leading order in

√
EC/EJ it is

dominated by the Fermi golden rule contribution of the
quartic term in the expansion, which at T = 0 allows an
incoming photon at k to split into three at ki, i = 1, 2, 3.
Expressing φ0 in terms of the array modes, one finds [38,
Sec. SIII]

Γin
k =

4z2

3π

ω4
0∆4

Γ2
0

sin2(δk)

ωk

∑
ki

sin2(δk1)

ωk1
× (16)

sin2(δk2)

ωk2

sin2(δk3)

ωk3
δ(ωk − ωk1 − ωk2 − ωk3).

As opposed to the instanton contribution, where f2
k in-

creases towards low energies [Eq. (8)], here the factors
sin2(δki)/ωki ∝ ωki [cf. Eq. (2)] suppress the contribution
of low frequency photons, and severely limit the phase
space for splitting of nearly-resonant photons. Sum-
ming over ki we find the resulting total inelastic rate
near resonance to scale as ∼ z2∆Γ4

0/ω
4
0 . The suppres-

sion with Γ0/ω0 can make it significantly smaller than
the instanton contribution, provided λ1 is not too small
[cf. Eq. (14)]. The ratio between the corresponding rates
is depicted in Fig. 2(f), which shows that instanton pro-
cesses are stronger by several orders of magnitude in the
experimentally-accessible regime of not-too-small Γ0/ω0

and z & 1 [where the exponential factor in Eq. (3) does
not dominate] [30].

Conclusions.— In this work we have developed a gen-
eral formalism for the study of instanton-particle colli-
sions, and applied it to a recently-realized [30] supercon-
ducting circuit in which a transmon qubit is strongly-
coupled to a high impedance transmission line. We have
shown that significant inelastic single-photon scattering
by instantons can be controllably initiated and identified
in such a setup: As opposed to the Josephson quartic
nonlinearity, which only affects near-resonance photons
and thus cannot split them into low frequency ones, an

instanton shifts the phases along the entire array, hence
couples well to low-k modes, and allows a near-resonant
incoming photon to dissipate energy into them. An ex-
periment has now appeared [39] demonstrating this ef-
fect, with favorable comparison to a simplified version of
our theory [38, Sec. SII]. This paves the way towards the
study of similar effects not only in various superconduct-
ing circuits [2, 3, 5–9, 17–29, 31, 32], but also in other
condensed matter (e.g., atomtronic setups) [4, 48, 49] and
particle physics [10–12] systems.
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