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We analyze scattering properties of twisted bilayer photonic crystal slabs through a high-
dimensional plane wave expansion method. The method is applicable for arbitrary twist angles
and does not suffer from the limitations of the commonly used supercell approximation. We show
strongly tunable resonance properties of this system which can be accounted for semi-analytically
from a correspondence relation to a simpler structure. We also observe strongly tunable resonant
chiral behavior in this system. Our work provides the theoretical foundation for predicting and
understanding the rich optical physics of twisted multilayer photonic crystal systems.

In recent years, there has been a renewed interest in
the rich physics that emerges when two identical lattices
are stacked with a relative in-plane rotation. Depend-
ing on the twist angle, the two orientations can be com-
mensurate, rendering the bilayer system periodic with
a ‘supercell’, or incommensurate, where the system is
quasiperiodic [1]. The study of these two phases and of
their interplay has recently revealed a number of novel
effects in bilayer two-dimensional (2D) materials [2–15].

Photonic crystals are periodic dielectric structures that
bear close analogy to periodic electronic systems [16–18].
Thus it is of interest to explore bilayer twisted photonic
crystal slab structures (Fig. 1), which is a close photonic
analogue to twisted bilayer 2D materials. Moreover, pho-
tonic crystals have properties that are intrinsically dif-
ferent from their electronic counterpart [19]. While in
a 2D material electrons are confined in the 2D layer,
photonic crystal slabs host guided electromagnetic waves
with leakage, which results in stronger interlayer interac-
tions and allows informative probing of system by exter-
nally incident light [20, 21]. Also, compared to twisted bi-
layer 2D materials, twisted bilayer photonic crystal slabs
allow significantly more design flexibility in terms of ge-
ometry.

In this letter we provide a theory of light transmission
and reflection through twisted bilayer photonic crystal
slabs. Except for few commensurate angles, the twisted
bilayer systems are quasi-periodic in general. Conse-
quently, standard tools for the theoretical studies of pho-
tonic crystals, which rely upon the periodicity of the
structure, cannot directly apply. Here we introduce
the use of high-dimensional plane wave expansion into
the method of rigorous coupled wave analysis (RCWA)
[22, 23] to treat the optical physics of twisted bilayer pho-
tonic crystal slabs. Unlike the commonly used supercell
approximation [12, 24], where the size of the supercell and
hence the computational cost becomes very large when
the twisted angle is small, in our approach the compu-
tational cost is largely independent of the twisted angle,

and in the small angle regime the computational cost is
significantly smaller than the use of the supercell approx-
imation. This theoretical approach enables us to explore
a set of novel physical effects in such twisted bilayer sys-
tems, including the strong tunability of the transmission,
reflection, chiral response, and resonant mode field dis-
tributions, as a function of the twist angle. We account
for the strong tunability in terms of the Moire physics
effects and by establishing a correspondence relation to
a simpler structure consisting of a photonic crystal slab
coupled to a uniform slab for incident light at an off-
normal angle of incidence.

The exploration of Moire physics effects in photonics
represents an emerging area of interest [24, 25]. The
physics of twisted bilayer photonic crystal slabs, which
is a direct optical analogue of twisted bilayer 2D materi-
als, has not been explored prior to this work.

An example of a twisted bilayer photonic crystal slab
is illustrated in Fig. 1. For each layer, a square lattice of
circular holes of radius 0.25a, where a is lattice constant,
are engraved in a dielectric slab of relative permittivity
εr = 4. This permittivity is representative of silicon ni-
tride [26], which is widely used in photonic applications
[27, 28]. The layer thickness is 0.2a and the width of
interlayer air gap is 0.3a.

Our theoretical approach is an extension of RCWA,
which has been widely used to compute the scattering
properties of periodic systems. The first layer in Fig. 1
scatters an incident plane wave in air with an in-plane
wavevector kinc to outgoing waves in air with in-plane
wavevectors kinc + g(1), where g(i) is a reciprocal lattice
vector of the i-th layer. This scattering process can be
described as:

b(1) = S̃(1)(kinc)a
(1) (1)

where a(1), b(1) are column vectors with each component
being the incoming and outgoing wave field amplitudes,
respectively, for each wave component with a specific in-
plane wavevectors as decribed above. S̃(1)(kinc) is the
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scattering matrix of the first layer, which can be rou-
tinely computed with the standard RCWA method. In
typical numerical calculations, the number of reciprocal
lattice vectors included can be limited to the N vectors
with the smallest magnitudes. Thus, S̃(1)(kinc) has a
dimension of 4N × 4N , where the factor 4 accounts for
two polarizations and the upper/lower sides of the layer
(more details in Supplemental Material [29] Sec. I).

We construct the scattering matrix of the twisted bi-
layer system, starting from the scattering matrices of the
two individual layers. Below we focus on the incom-
mensurate case. Consider the scenario discussed above,
where an incident wave at kinc is scattered to a wave
at kinc + g(1) upon transmission through the first layer.
This transmitted wave is then scattered by the second
layer into reflected and transmitted waves with in-plane
wavevectors kinc + g(1) + g(2), in a process described by
the scattering matrix S̃(2)(kinc + g(1)). The reflected
wave, in turn, interacts with the first layer as described
by the scattering matrix S̃(1)(kinc +g(1) +g(2)), and the
process continues.

To describe the multiple scattering process as dis-
cussed above, it is therefore advantageous to construct
two larger scattering matrices S(1)(kinc) and S(2)(kinc)
of dimension 4N2 × 4N2. S(1)(kinc) describes the scat-
tering process by the first layer from waves with in-plane
wavevector components kinc + g(1) + g(2) to waves with
kinc + g(1)′ + g(2), for all reciprocal lattice vectors g(1),
g(1)′ of the first layer and g(2) of the second layer. It is
block diagonal with each block being a S̃(1)(kinc + g(2))
and thus can be constructed using the standard RCWA
method applied to the first layer. S(2)(kinc) can be sim-
ilarly defined and constructed. Once these two matri-
ces are constructed, the scattering matrix of the bilayer
system can be obtained using the same procedure as in
standard RCWA method for treating multilayer systems.

Such a coincidence needs to be taken into account when
constructing the scattering matrix. The method can be
extended to multilayer structures with M different twist
angles by combining NM−1 scattering matrices into one
in expanded bases for each layer. The computational cost
of the algorithm scales exponentially with the number of
twist angles. When combining subspace scattering ma-
trices, various adjustments can be made. For example,
at commensurate angles, plane wave bases at wavevectors
kinc+g(1) +g(2) and kinc+g(1)′+g(2)′ with g(1) 6= g(1)′

and g(2) 6= g(2)′ may coincide. Using the numerical tech-
niques discussed above, we study the transmission of nor-
mally incident light through the twisted bilayer struc-
ture of Fig. 1. For normally incident plane wave, Fig. 2a
shows the total far-field power transmission (summing all
diffraction orders) of right-circularly polarized incident
light at various frequencies for twist angles from 0+ to
45 degrees. The transmission features a set of resonance
peaks. There are apparently two groups of resonances:
one group has resonant frequencies located near 0.80 and

FIG. 1. Illustration of twisted bilayer photonic crystal with
circular holes in a square lattice, illuminated with normally
incident light.

0.73 c/a, where c is the speed of light in vacuum; the
other group has resonant frequencies strongly dependent
upon the twist angle. The presence of such a twist-angle-
dependent resonance is potentially interesting in practice
as it highlights that the optical properties of the coupled
slab system can be strongly tunable by changing the twist
angle. Also, these resonances directly correlate with the
poles of the transmission matrix. Thus our results show
that the twist angle can be used to influence the poles
of the transmission matrix as well. (See Supplemental
Material [29] Sec. II)

FIG. 2. (a) Transmission as a function of incident light fre-
quency and twist angle for the twisted bilayer structure shown
in Fig. 1. (b) Resonant frequencies of the twisted bilayer
structure as a function of twist angle, as predicted from ana-
lyzing the band structure at wavevectors m(α) of the corre-
sponding system shown in (c). (c) The corresponding struc-
ture with one photonic crystal layer and one homogeneous
layer. (d) Band structure of the corresponding structure
shown in (c), with the grey background indicating the light
cone.

We now develop a theoretical model to account for the
behaviors of both groups of resonances in the twisted
photonic crystal slab structure. This model connects the
behavior of the resonances of the twisted slab structure
(Fig. 1) to those of a corresponding structure (Fig. 2c)
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consisting of a single photonic crystal slab coupled to a
uniform slab. Specifically, we establish a correspondence
relation: for incident light with an in-plane wavevector
kinc, the resonant frequencies of a twisted bilayer system
at a twist angle α can be well approximated by the res-
onant frequencies of the corresponding system with an
in-plane wavevector

k‖ = kinc + m(α) (2)

where m(α) = g(1) − g(2) is a Moire wavevector.
We first provide a direct numerical evidence of the cor-

respondence relation. In Fig. 2d, we depict the band
structure ω(k‖) for the corresponding system. All pa-
rameters of the corresponding system are the same as
for the twisted bilayer structure in Fig. 1, except that
now one of the layers is replaced by a uniform dielec-
tric slab with a relative permittivity of εeff = 3.41,
which corresponds to the average dielectric constant of
the photonic crystal slab. Here, we focus on the guided
resonance modes that are concentrated in the photonic
crystal slab. The band structure (Fig. 2d) is qualita-
tively very similar to that of a single photonic crystal
slab [20]. In Fig. 2b, we plot the position of the reso-
nances in the twisted bilayer system, as predicted [30]
starting from the band structure in Fig. 2d and using
the correspondence relation Eq. (2). Comparing Figs. 2b
and 2a, we see that the predicted locations of the res-
onances match very well with the direct numerical sim-
ulations of the twisted bilayer structure. Here, to ac-
count for the main resonant features in our system, it
is sufficient to take into account only the lowest order
Moire wavevectors. These wavevectors are mi,j(α) =

g
(1)
i,j − g

(2)
i,j , where (i, j) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)},

and g
(n)
i,j = (i · x̂(n) + j · ŷ(n))2π/a, with x̂(n) and ŷ(n)

being the unit vectors along the [10] and [01] directions
of the n-th layer.

We now provide a justification of the correspondence
relation discussed above. The modes of this system in
general can be obtained by solving an eigenvalue prob-
lem:

Ĥ |ψ〉 =

(
ω2

c2

)
|ψ〉 (3)

where Ĥ = ∇× 1
ε(r)∇× is the effective Hamiltonian with

ε(r) being the spatial distribution of the electric permit-
tivity and |ψ〉 denoting the magnetic field distribution of
the eigenmodes [31]. As a good approximation, we can
expand the eigenmodes on the basis of∣∣∣kinc + g(1) + g(2)

〉
i
≡ φi(z)e−i(kinc+g(1)+g(2))·r‖ (4)

where i = 1, 2 labels the two layers, r‖ denotes the
in-plane coordinates, and φi(z) is the profile along z-
direction of the guided mode for the i-th layer. We use

Ĥ(kinc) to denote the matrix obtained by projecting the
Hamiltonian on this basis set. The choices of the in-
plane wavevectors in this basis set represent all possible
in-plane wavevectors which the incident wave can scat-
ter into. Thus, the eigenstates for the matrix Ĥ(kinc)
describe all possible guided resonances that the incident
wave can couple into.

In the following, we will prove that Ĥ(kinc) for the
twisted bilayer system can be approximated by a block
diagonal matrix, which describes the modes of the corre-
sponding system at kinc+m(α). We focus on the general
case where the twist angle α is incommensurate. Since
g(2) = g(1) + m(α), we can equivalently write each of
the basis states in Eq. 4 as

∣∣kinc + m(α) + g(1)
〉
i
. Con-

sider a basis state
∣∣kinc + m(α) + g(1)

〉
1

confined in the

1st layer. Among all the states
∣∣kinc + m′(α) + g(1)′〉

1
confined in the 1st layer, this state will dominantly cou-
ple to the states with m′ −m being a reciprocal lattice
vector of the 1st layer, since the coupling is facilitated
by the periodic dielectric variation in the 1st layer. In
contrast, to a state where m′−m is not a reciprocal lat-
tice vector of the 1st layer, the coupling is significantly
weaker, since in this case it must be facilitated by the pe-
riodic dielectric variation of the second layer, which has
a much weaker overlap with φ1(z). Similarly, to a basis
state

∣∣kinc + m′(α) + g(1)′〉
2

that is confined in the 2nd

layer, the coupling from
∣∣kinc + m(α) + g(1)

〉
1

is also sig-
nificantly weaker, since the coupling strength involves an
overlap integral of φ1(z) and φ2(z), which are spatially
separated.

Therefore, Ĥ(kinc) can be approximated as a block-
diagonal matrix, with each block describing the coupling
among the basis states

∣∣kinc + m(α) + g(1)
〉
i

due to di-
electric distribution within the i-th layer. As seen from
Eq. (3), the coupling between

∣∣kinc + m(α) + g(1)
〉
1

and∣∣kinc + m(α) + g(1)′〉
1

involves the contributions from
the dielectric permittivity of both slabs. However, since
the angle α is incommensurate, the permittivity of the
second slab cannot facilitate the coupling between these
two states with g(1) 6= g(1)′. Therefore, for incident
light with an in-plane wavevector kinc, the modes in the
twisted bilayer that are excited can be well described by
the modes of a single photonic crystal slab coupled to a
uniform dielectric slab with incident in-plane wavevector
at kinc + m(α). We have therefore provided a justifica-
tion of the correspondence relation.

The correspondence relation provides an understand-
ing of the origin of different angle-dependencies of the
resonances as observed in Fig. 2a. In the case of Fig. 2a,
kinc = 0. For the corresponding structure shown in
Fig. 2c, the resonant frequencies at the wavevector m(α)
are in the vicinity of

ω
(1)
i,j =

c
√
εeff

∣∣∣m(α) + g
(1)
i,j

∣∣∣ (5)
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FIG. 3. (a) The blue circles and stars denote the reciprocal
lattices of the two layers respectively. The red arrow is one
of the first-order Moire wavevectors. (b) Illustration of in-
plane wavevectors (open stars) of the basis functions of the
Hamiltonian in Eq. 3, with the twist angle dependence shown
in red shades. The dotted circle is the unit circle.

For every m(α), there is in fact a choice of g
(1)
i,j for

which ω
(1)
i,j is independent of the twist angle α. Here

in Fig. 3 we provide an illustration. Consider the case

where m(α) = g
(1)
0,1 − g

(2)
0,1 (red arrow in Fig. 3a). As α

varies, m(α) + g
(1)
0,−1 moves on a circle (dotted circle in

Fig. 3b, denoted as the unit circle) centered at the ori-

gin in wavevector space with a radius of
∣∣∣g(1)

0,1

∣∣∣. Thus,

the corresponding resonant frequency in the twisted bi-
layer system is largely independent of the twist angle.
In contrast, the resonances in the twisted bilayer system

that correspond to g
(1)
0,1, g

(1)
±1,0 under this specific choice

of m(α) have strong angle dependency, since for each of

these cases m(α)+g
(1)
i,j does not stay on the unit circle as

α varies, and instead
∣∣∣m(α) + g

(1)
i,j

∣∣∣ become α dependent,

as also shown in Fig. 3b.

FIG. 4. The magnitude of the electric field distribution im-
mediately below the bottom layer in wavevector space for (a)
a twist-angle-independent resonance and (b) a twist-angle-
dependent resonance. The dotted circles are the unit circles.

Our understanding of the resonant modes can be con-
firmed by the field distribution near the structure as ex-
cited by the incident plane wave. Fig. 4 compares the
wavevector-space distributions of the magnitude of the
electric field |E| on a plane immediately beneath the bot-
tom layer at a twist angle α = 14.32◦ for two different
resonances (with real-space distributions and other ex-

FIG. 5. (a) (Trcp − Tlcp)/(Trcp + Tlcp) as a function of fre-
quency and twist angle. The Moire light line is marked by
red dashed lines. (b) Illustration of the lowest-order scat-
tering process that contributes to the chiral responses. The
stars represent the reciprocal lattice of the first layer. The
grey regions indicate the light cone. The red circles represent
the relevant Moire wavevectors m(α), with the twist angle
dependence captured by the red shades. The intersections
between the red shades and the grey regions are on the Moire
light line.

amples in Supplemental Material [29] Sec. III). For the
twist-angle-independent resonance (Fig. 4a), the field is
distributed primarily on the unit circle. For the twist-
angle-dependent resonance (Fig. 4b), the dominant peaks
are within the unit circle. These distributions are con-
sistent with our discussion above on the correspondence
relation.

The bilayer system considered here is chiral. The bi-
layer system at an incommensurate twist angle has C4

symmetry. Thus, for the normally incident light, the spin
of the photons is preserved in the 0th order diffraction
process. (The spin of ±1 corresponds to right circularly
polarized (RCP) and left circularly polarized (LCP) light
respectively.) Since the twisted bilayer system in general
does not have mirror symmetry, the responses of the sys-
tem to RCP and LCP incident light are different. In
Fig. 5a, we consider the total transmission TRCP and
TLCP for RCP and LCP incident light respectively. We
plot normalized transmission contrast TRCP−TLCP

TRCP+TLCP
as a

function of frequency and twist angle. The magnitude
of such contrast gives a measure of the strength of the
chiral response of the system.

Examining Fig. 5a, we note that the chiral response is
prominent only at the resonances of the system. This is
expected since the direct scattering process [20] consists
of transmission through the effective uniform slabs, which
is not chiral. The chiral response has an odd symmetry
along the angle axis with respect to 0 and 45 degrees,
as can be understood by the transformation of the twist
angle with respect to the mirror plane at these angles.
The chiral response vanishes at α = 0◦ or 45◦, where the
bilayer structure has C4v symmetry.

In Fig. 5a, we also note that the chiral response is
significantly weaker in the region between the lines of
ω = 2 sin(α/2)·2πc/a and ω = 2 sin((π/2− α)/2)·2πc/a,
shown as the red dashed lines in Fig. 5a, in spite of the
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fact that there are prominent resonances in this region
as can be seen by examining Fig. 2a. Below, we refer to
these lines as the Moire light line. This effect can be un-
derstood as follows: the lowest order scattering process
that contributes to the chiral response consists of the
normally incident plane wave being scattered by the first

layer to the states with small wavevectors such as g
(1)
0,1,

which are then scattered by the second layer to wave
components in free space with small in-plane wavevec-

tors such as g
(1)
0,1 − g

(2)
0,1 (Fig. 5b orange arrows). These

wave components transition between being evanescent
and being propagating at the Moire light lines. Between
the Moire light lines, the chiral transmission contrast is
weaker since these wave components are evanescent along
the z-direction and do not contribute to the chiral trans-
mission contrast which arises only from the propagating
field.

The behavior at this Moire light line, where a diffrac-
tion order transitions from being evanescent to being
propagating, is reminiscent of Woods anomaly in grat-
ing structures [32, 33]. In standard grating structures
or photonic crystal slabs, the effects of Wood’s anomaly
manifest as one varies the frequency or the angle of the
incident light. In contrast, in the bilayer system here the
Wood’s anomaly can in addition be probed by varying
the twist angle.

To summarize, we have presented a theoretical analysis
of twisted bilayer photonic crystal slabs. Our work pro-
vides a theoretical foundation for understanding the very
rich set of optical physics of twisted bilayer photonic crys-
tal slab systems. Such understanding may prove useful
in developing tunable filters, lasers, and optomechanical
devices.
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