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We compute continuum and infinite volume limit extrapolations of the structure factors of neutron
matter at finite temperature and density. Using a lattice formulation of leading-order pionless effective
field theory, we compute the momentum dependence of the structure factors at finite temperature and
at densities beyond the reach of the virial expansion. The Tan contact parameter is computed and
the result agrees with the high momentum tail of the vector structure factor. All errors, statistical
and systematic, are controlled for. This calculation is a first step towards a model-independent
understanding of the linear response of neutron matter at finite temperature.

INTRODUCTION

As much as 99% of the gravitational binding energy
released in core-collapse supernovae escapes the star
in the form of neutrinos. This enormous flux, when
it interacts with the nuclear matter on its way out of
the star, is believed to be an essential ingredient in
the explosion of the star [1]. Though neutral-current
neutrino-neutron scattering is well-described in vac-
uum by tree-level Z0 exchange, neutrino scattering
in supernova material is complicated by many-body
dynamics induced by the strong force. Due to its
non-perturbative nature, however, these effects are
hard to calculate (for a review see Ref. [2]). We
compute here the exact structure factors of a spin-
balanced neutron gas at leading order in the pionless
effective field theory [3] using Monte Carlo methods
at fugacities of z ≡ exp(βµ) = 1.0 and 1.5.

The main accomplishments presented here are suc-
cessful continuum and infinite volume limit extrap-
olations at such high fugacities. Consequently, all
sources of error, both statistical and systematic, are
accounted for and add up to a few percent. This
was made possible by the import of several methods
from lattice QCD for the simulation of fermions in-
cluding: the conjugate-gradient iterative method [4],
pseudofermions [5], and chronological inverters [6].
Since lattice artifacts typically decrease with density,
we expect the methods presented here to provide
complete control over this system for any fugacity
z ≤ 1.5. Such exact calculations, computed over a
range of densities and temperatures, may place the
nuclear physics inputs to supernovae simulations on
firmer theoretical footing.

The differential cross section of low energy neutri-
nos off a gas of non-relativistic neutrons is approx-
imately determined by the static vector and axial

structure factors 1

SV (q) =

∫
d3r e−iq.r 〈δn(0, r) δn(0,0)〉

SA(q) =

∫
d3r e−iq.r 〈δSz(0, r) δSz(0,0)〉 ,

(1)

where δn = n−〈n〉 and δSz = Sz−〈Sz〉 are the fluctu-
ations of the density and spin [2, 9]. These quantities
are the main object of our calculations. We will also
compute the Tan contact C, which determines the
asymptotic behavior of the particle distribution func-
tion. The result for C provides a non-trivial check
for structure factors.

Currently, the only other model-independent ap-
proach to finite-temperature neutron matter is the fu-
gacity, or virial, expansion, expected to describe neu-
tron matter well for z < 1/2. Within this approach,
the equation of state and SV (q = 0) and SA(q = 0)
have been computed at second order [10, 11]. Now
included in some state of the art simulations [12],
these virial results suppress neutrino-neutron scat-
tering rates relative to the free theory [13], which
appear to assist the explosion of the star [12, 14].
Our calculation extends these results by providing
the full momentum dependence of SV/A(q) and are
exact for all fugacity.

We find a clear difference between the structure
factors of neutron gas and of the unitary gas [16, 31],

1 The cross section is determined by the dynamic structure
factor, but, due to the difficulty in computing it, an ap-
proximation involving only the static structure factors is
typically used. For SV , this approximation is reasonable
at low neutrino energies (pν � (MT )1/2 ∼ mπ), but the
precise criterion depends on the strength of the interaction.
For a fuller discussion, see for instance Ref. [7]. The same
holds for SA until densities where non-central forces become
appreciable [8]. We restrict attention here to densities and
temperatures low enough that these assumptions hold.
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an approximation to the former commonly used. In
particular both structure factors are suppressed in
neutrons relative to the unitary gas. Qualitative
agreement between cold-atom experiments and our
calculation give confidence in our results [17].

In this paper the interaction between neutrons
will be described with pionless effective field the-
ory [3, 18, 19]. Its applicability is restricted to kine-
matical regimes where momentum transfers between
nucleons is below the pion mass, which is roughly sat-
isfied over the temperature range of interest T . 10
MeV (1 MeV ' 1.16× 1010 K). Over this range the
thermal momenta span p ∼

√
MT . 100 MeV for

neutrons of mass M = 938 MeV. Pionless effective
field theory provides an expansion of observables in
powers of typical momentum scales over the pion
mass and was shown to converge in a number of
few-nucleon processes in the region q . 100 MeV
[20–23]. In this work, we will restrict ourselves to
leading order in the low energy expansion. At this
order, the hamiltonian is given by

H =

∫
d3x

[
∇ψ†.∇ψ

2M
− g
(
ψ†1ψ1

)(
ψ†2ψ2

)]
, (2)

where ψ is a spin doublet of quantized fields destroy-
ing a neutron, the index σ = 1, 2 distinguishes two
spin components, and the coupling constant g is de-
termined by the s-wave scattering length between
neutrons.

FORMALISM

In order to use numerical methods (and to properly
define the contact interaction in the hamiltonian
in Eq. (2)) we will use a spatial cubic lattice with
spacing ∆x. The lattice hamiltonian is

H =
∑
xx′

ψ†xkxx′ψx′︸ ︷︷ ︸
K

− g

∆x3

∑
x

(
ψ†x1ψx1

)(
ψ†x2ψx2

)
︸ ︷︷ ︸

V

,

kxx′ =
∑
p

p2

2M∆x2
e−ip·(x−x

′) ,

(3)

where p are lattice momenta with components
pi = 2π

Nx
ni, and −Nx−1

2 ≤ ni ≤ Nx−1
2 and we use a

cubic lattice with N3
x sites. The number and spin op-

erators are N =
∑
x ψ
†
xψx and S =

∑
x ψ
†
xσψx, and

the chemical potentials coupled to each will be de-
noted µ and h, respectively. The partition function at
inverse temperature β can be written, with the help
of the Trotter formula and the Hubbard-Stratanovich

transformation, by using standard steps:

Z = tr e−β(H−µN) ≈ tr

Nt∏
t=1

e−∆tKe−∆t(V−µN)

=

∫ ∏
x,t

Dψ̂†xtDψ̂xtDAxt e
−S(ψ̂†,ψ̂,A) , (4)

where Nt is the chosen number of time-slices and
the error involved in Eq. (4) is of order O(∆t2) with
∆t = β/Nt; the action S = SF + SA is given by the
fermionic and auxiliary-field contributions

SF = −
∑
xt

ψ̂†xt+1e
Axt+µ̂ψ̂xt +

∑
x,x′,t

ψ̂xtBxx′ ψ̂x′t,

SA =
1

ĝ

∑
x,t

(
cosh(Axt)− 1

)
. (5)

The matrix Bxx′ is an N3
x ×N3

x matrix representing
spatial hopping:

Bxx′ =
1

N3
x

∑
p

e−ip·(x−x
′)eγ̂

p2

2 (6)

and the parameters of the lattice action are given by

µ∆t = µ̂+ log
f1(ĝ)

f0(ĝ)
,

∆t

M∆x2
= γ̂ ,

g∆t

∆x3
= log

f2(ĝ)f0(ĝ)

f1(ĝ)2
, (7)

where fα(ĝ) ≡
∫∞
−∞ dA e−

cosh(A)−1
ĝ eαA. Eq. (4) and

the mappings in Eq. (7) are derived in Ref. [16].
At leading order in the pionless EFT, the s-wave

phase shift is given by k cot δ(k) = −1/a, with scat-
tering length a = −18.9 fm. Thus the coupling
constant g is adjusted in order for the theory, in the
continuum, infinite volume, zero temperature and
µ = 0 limits, to reproduce this scattering amplitude.

The way the continuum limit of our lattice theory is
approached is subtle. Numerical results indicate that
there are terms proportional to powers of ∆t/∆x2

appearing in several quantities. Consequently, we
take ∆t→ 0 first, then ∆x→ 0. In practice, this is
accomplished by keeping γ̂ = ∆t/M∆x2 � 1 as ∆x
is reduced. In the hamiltonian limit we find that

1

Mg
=

c1
∆x
− 1

4πa
, (8)

where c−1
1 = 5.14435... . By fixing M = 938 MeV, the

chemical potential µ, the inverse temperature β, the
box size L, and the number of spatial and temporal
discretization steps Nx and Nt we can use Eq. (7)
and Eq. (8) to compute ĝ, γ̂, µ̂ with ∆x = L/Nx and
∆t = β/Nt, and check γ̂ � 1.
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METHODS

To sample the grand canonical ensemble in Eq. (4)
we rewrite the partition function

Z =

∫
Dψ̂†xtDψ̂xtDAxt e

−SA(A)−ψ̂†M(A)ψ̂

=

∫
Dφ†xtDφxtDAxt e

−SA(A)−φ†M−1φ ,

(9)

using a complex scalar pseudofermion field φxt (no
spinor index). The fermion matrix M is diago-
nal in spin and in the spin-balanced case it splits
into two identical blocks M1 = M2. Furthermore,
M = M1M>1 so detM = detM1M>1 = detM. The
integrand is then positive definite, so we can apply
the usual Monte Carlo methods to sample the par-
tition function. We use Hybrid Monte Carlo [24] to
sample the field A: we interleave the sampling of
φ with probability P (φ) ∝ exp(−φ†M−1φ), a mod-
ified Gaussian distribution, with updates of A gen-
erated by a classical mechanics evolution according
to a Hamiltonian H(π,A) = π>π/2 + V (A) where
V (A) = SA(A) + φ†M−1φ and π is canonical mo-
mentum conjugate to A sampled randomly according
to P (π) ∝ exp(−π>π/2) at the beginning of each
classical trajectory.

One ingredient required in the classical evolution
of A is the evaluation of the derivative dV/dA (the
so-called force term), which involves the calculation
of M−1φ. Since the matrix M is hermitian and
positive definite, we use conjugate gradient [4], an
iterative method, to compute M−1φ. We acceler-
ate the iterative process with the “minimal residue
extrapolation” method [6]. This method uses past
solutions to construct a trial solution to the present
inverse problem (hence its designation as a “chrono-
logical inverter”). During the iterative process, the
multiplication with M1 is split into Nt multiplications
with diagonal matrix eA+µ̂ and Nt multiplications
with the hopping matrix B. The most time consum-
ing piece is the multiplication by B, but this can
be done efficiently in the momentum space where B
is diagonal. Using the fast Fourier transform [25],
the complexity of multiplying by B is reduced to
Vs log Vs, with Vs = N3

x being the number of points
in a time slice. The overall complexity of multiplying
by M is then O(NtVs log Vs), much better than the
O(NtV

3
s ) computational complexity of the Hybrid

Monte Carlo algorithm without pseudofermions we
used in our previous study [26]. In fact, our simu-
lations indicate that for Nx & 8 the pseudofermion
method wins out. Another advantage is that this
method can be parallelized efficiently by dividing the
lattice evenly over the temporal direction.
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FIG. 1: Continuum limit extrapolation: for SV and
SA for z = 1.0 and q/qT = 0.45 (top) and

contact (bottom).

RESULTS

In all calculations the coupling g was determined
with from Eq. (8). As an additional check, we ran
simulations with 0.05 < z < 0.8 and compared our
results with the virial expansion. The second virial
coefficient we extracted, b2 = 0.419(3), agrees with
the Beth-Uhlenbeck prediction b2 ' 0.415 [27]. We
also found b3 = −0.13(5).

Physical parameters for our simulations

T [ MeV] V [ fm3] z n/n0[%] εF [MeV]

4.14 183 1.0 3.2(1) 5.9(2)

1.5 5.1(1) 8.0(1)

TABLE I: The temperature, volume, and fugacity
are exact inputs to the calculations and have no

uncertainty. In contrast, the density n, and Fermi
energy εF are computed quantities and the error

bars are obtained by continuum limit extrapolations.
Here n0 = 0.16 fm−3 is nuclear saturation density.
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We used parameters T = 4.14 MeV, V = (18 fm)3,
∆t = 0.49 fm and ∆x = 1.38 fm in our “best” cal-
culations. Errors due to finite spatial and temporal
lattice spacings, and finite volume, were controlled
by performing calculations at different values of V ,
∆t and ∆x. For instance, in order to control for finite
volume effects, we performed calculations at three dif-
ferent volumes, V = (10 fm)3, (14 fm)3, and (18 fm)3,
while holding T = 4.14 MeV, z = 1.0, ∆x = 2.0 fm
fixed. At the largest volumes, errors due to finite
volume effects are smaller than 2.0% for SV and 1.0%
for SA; these we take as upper bounds on finite vol-
ume errors. Similarly, to control for finite ∆t errors,
we performed calculations at four different tempo-
ral lattice spacings, ∆t = 0.49 fm, 0.31 fm, 0.245 fm
and 0.196 fm, with T = 4.14 MeV, V = (6.9 fm)3,
∆x = 1.38 fm held fixed, then extrapolated to the
∆t→ 0 limit. The typical difference in observables
between the ∆t→ 0 extrapolation and the parame-
ters used in our “best” simulations is 2% for SV and
0.5% for SA.

Extrapolation to the spatial continuum limit
(∆x→ 0) is the largest source of systematic errors for
most observables.2 To extrapolate, we perform cal-
culations with three different spatial lattice spacings,
∆x = 2.00 fm, 1.63 fm and 1.38 fm with Nx = 9, 11
and 13, while Nt = 96, ∆t = 0.49 fm and z are
held fixed. We then fit observables to the formula
〈O〉 = a+ b∆x2. As an example, we show in Fig. 1
the extrapolations of SV/A(q) for a typical value of q

(q/qth = 0.45, with qth ≡
√

6MT ≈ 153 MeV).
Continuum limits for the structure factors at fu-

gacities z = 1.0 and 1.5 are plotted in Fig. 2. All
sources of error are included in the error bars. This in-
cludes statistical errors, the errors due to the ∆x→ 0
extrapolation (as shown in Fig. 1), as well as the esti-
mates of the systematic errors due to finite volumes
and ∆t discussed above. Several features deserve com-
ment. First, we find a ∼ 20% suppression in both
structure factors relative to the unitary gas when
a = −18.9 fm [16]. Thus the finite scattering length
produces a detectable effect. Similar reductions in
the vector structure factor due to a negative scatter-
ing length were found in cold-atom experiments [17].
Second, the suppression of the vector structure fac-
tor at low momenta is not captured by second-order
virial calculations [7]. On the other hand, fourth-
order virial calculations of SV (q = 0) and SA(q = 0)

2 This can be seen by considering the Symanzik action [28, 29].
The lowest dimension term of this theory not included
in Eq. (2) involves two extra derivatives and its coefficient
is proportional to ∆x2 [30].
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FIG. 2: Continuum limits of the vector and axial
structure factors at fixed temperature and z = 1.0
and z = 1.5. The bands correspond to the OPE

asymptotic limits in Eq. (11) and the dotted lines to
the free theory result.

for the unitary gas produce qualitatively similar be-
havior to the z = 1.0 results of Fig. 2 [31]. However,
naively extrapolating these fourth-order predictions
to z = 1.5 produces an SV (q = 0) a factor of two
smaller than Fig. 2 predicts. Therefore, though it
is possible that z = 1.5 may lie within the radius of
convergence of the virial expansion, the structure fac-
tors computed here cannot be captured by currently
available virial coefficients.

Since the structure factors are derived directly
from a partition function they automatically satisfy
the following “sum-rules”

SV (0) = T∂n/∂µ, SA(0) = T∂s/∂h,

required for any thermodynamically consistent the-
ory. This consistency ensures that macroscopic con-
servation laws are obeyed by response functions [32],
a feature needed for large-scale supernova simula-
tions [33, 34].

The Tan contact parameter, C [35]:

C = lim
k→∞

k4n(k) , (10)

characterizes the high momentum behavior of many
observables in this system, including both the mo-
mentum distribution and structure factors:

SV (q) = 〈n〉+
C

8V q
+O(q−2)

SA(q) = 〈n〉 − C

8V q
+O(q−2).

(11)



5

This work

Jensen et. al.

BDMC

Goulko et. al.

Drut et. al.

MIT

Swinburne

JILA

unitary

a=-18.9 fm

0.5 1.0 1.5 2.0 2.5
1.5

2.0

2.5

3.0

3.5

T /TF

C
/N

k F

FIG. 3: Experimental data for the value of the
contact of the unitary gas is shown in warm colors

(Swinburne [37], JILA [38], MIT [39]), while
theoretical results are shown in cool colors (Bold

diagramatic Monte Carlo [40], Jensen [41], Drut [42],
Wingate [43]). The dashed grey curve is the

third-order virial expansion for the unitary gas [44]
and the brown dashed line shows the second-order

results for a = −18.9 fm. The band around the
virial curves incorporates an estimate of the

next-order contribution.

The contact C may be written as

C = g2M2

∫
d3x〈ψ†1ψ1ψ

†
2ψ2(x)〉, (12)

as was shown in Ref. [36] using the operator prod-
uct expansion. We compute C using Eq. (12) and
its continuum extrapolation, shown in Fig. 1, gives
C/NkF = 2.1(1) (at z = 1.5) and C/NkF = 2.1(1)
(at z = 1.0). The uncertainty is dominated by statis-
tical and continuum extrapolation errors. In Fig. 2
we show, besides the continuum extrapolated results
for the structure factors, the asymptotic limits at
high q predicted by Eq. (11) and our measured val-
ues of 〈n〉 and C. The agreement between the OPE
prediction Eq. (11) and high-momentum tails of SV/A
is a further consistency check for our calculation.

There are also a number of theoretical calculations
and experimental measurements of the contact for
the unitary gas (scattering length a = −∞). A
direct comparison with the values we obtained is
complicated by the difference in scattering lengths,
the different values of the temperature (in units of
the Fermi energy) and the tensions between different
experiments and numerical calculations. In Fig. 3 we
present the available experimental and Monte Carlo
data along side our values for the contact and the
predictions of the virial expansion. The agreement
we find is a further check on our calculations.

CONCLUSIONS

We report a Monte Carlo calculation of the struc-
ture factors of neutron matter at temperatures and
densities relevant to supernovae and neutron star
mergers. All sources of numerical error, statistical
and systematic, are accounted for and add up to a
few percent. This control was possible in large part
due to technologies seldom used in this context. The
results show a definite change from both the free
theory and the unitary limit as the scattering length
is changed, agreeing qualitatively with experiment
[17]. We also calculate the contact and verify its
consistency with the high-momentum dependence of
the structure factors.

After controlling for these errors the dominant
source of uncertainty is the hamiltonian. Expe-
rience with pionless EFT in few-nucleon systems
[3, 20, 21, 45, 46] suggests that pionless EFT con-
verges well in this regime and that inclusion of next-
order interactions improves the results significantly.
At third-order in the EFT, tensor forces appear that
are likely to be particularly important to the axial
structure factors. Extensions to larger densities and
lower temperatures appear possible. Thus, the calcu-
lation presented here opens up a path for a definitive
calculation, including a more realistic description of
nuclear forces, encompassing most temperatures and
densities relevant to supernova physics. Extension
to higher temperature, however, is more complex,
as typical momenta exceed the range of convergence
of the pionless EFT and a substantially more com-
plicated hamiltonian will be required. Even more
difficult would be the calculation of dynamical struc-
ture factors, as those depend on fundamentally new
ideas (perhaps those reviewed in [47–51]) to deal with
the real time dependence inherent to the problem.
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