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The chemotactic network of Escherichia coli has been studied extensively both biophysically
and information-theoretically. Nevertheless, connection between these two aspects is still elusive.
In this work, we report such a connection. We derive an optimal filtering dynamics under the
assumption that E. coli ’s sensory system optimally infers the binary information whether it is
swimming up or down along an exponential ligand gradient from noisy sensory signals. Then we
show that a standard biochemical model of the chemotactic network is mathematically equivalent to
this information-theoretically optimal dynamics. Moreover, we demonstrate that an experimentally
observed nonlinear response relation can be reproduced from the optimal dynamics. These results
suggest that the biochemical network of E. coli chemotaxis is designed to optimally extract the
binary information along an exponential gradient in a noisy condition.

Living things have developed sensory systems to be-
have and navigate themselves adaptively in changing and
uncertain environments. One of the most-analyzed such
systems is the sensory system of Escherichia coli for
chemotaxis. In E. coli chemotaxis, a cell obtains infor-
mation of a spatial gradient of a ligand from the tem-
poral change in the ligand concentration that it experi-
ences by swimming in the gradient. An E. coli cell can
sense a positive change in the ligand concentration when
it swims along the increasing direction of the gradient and
vice versa. The swimming trajectory of E. coli consists
of a series of ballistic swimming called run interrupted
with random reorientations of direction called tumbling.
By inhibiting the frequency of tumbling when it senses
a positive change in an attractant concentration, the E.

coli cell can elongate the run length toward the direction
of the higher concentration.
The mechanism of the sensory system has been inten-

sively studied both experimentally and theoretically. Ex-
perimental studies have revealed the response of E. coli to
various temporal profiles of concentration by measuring
behaviors of motor rotation [1, 2] and signaling molecules
[3, 4]. Theoretical studies have proposed and analysed
biochemical models that can reproduce the properties of
experimentally observed responses such as high sensitiv-
ity to weak changes in concentration [4–7] and sensory
adaptation [8]. Based on these works, Tu et al proposed
a simplified biochemical model [9], which can explain var-
ious aspects of the responses simultaneously [10]. This
standard biochemical model has been widely employed
for various purposes such as analysis of sensory-motor co-
ordination [11], fold-change detection [12, 13], and ther-
modynamics of sensory adaptation [14].
In the biochemical model [9], the sensory system con-

sists of receptor complexes, each of which takes either
active or inactive state. Active receptors send a signal
via mediator proteins and control the rotation of flagel-
lar motors. The ratio of active receptors, termed receptor
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activity at, is subjected to a feedback regulation through
receptor modification, which is characterised by methy-
lation level mt. The receptor activity at is determined by
the free energy difference ft between active and inactive
states:

at =
1

1 + exp(ft)
. (1)

The free energy difference ft comprises additive effects of
the methylation level mt and of the ligand concentration
[L]t as

ft = N(−αmt + log[L]t + C), (2)

where N,α > 0, and C are biochemical constants. Equa-
tions (1) and (2) take the form of the Monod-Wyman-
Changeux (MWC) model describing allostery [15] where
N specifies the receptor cooperativity producing high
sensitivity [4, 6, 7]. The methylation level mt is mod-
ulated by the receptor activity at as

dmt

dt
= F (at), (3)

where F is assumed to be a monotonically decreasing
function. Since dat/dmt > 0 and F ′(at) < 0, the dy-
namics of the methylation level mt with the function F
constitutes a negative feedback regulation over the re-
ceptor activity at. Due to the negative feedback, this
biochemical network displays the sensory adaptation [8],
that is, when the concentration [L]t is stationary, the re-
ceptor activity converges to a single value ā such that
F (ā) = 0 which is independent of the stationary ligand
concentration.
Although the biochemical model captures integral

parts of the sensory system and its behaviors, there is
room for discussion from the view point of noise toler-
ance. Because the sensory system relies on stochastic
ligand-receptor interactions and receptor modifications,
the sensing signal inevitably contains noise. This noise
would cause a fatal influence on the chemotactic perfor-
mance because it can bury the actual temporal changes
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in ligand concentration and could end up with misdirec-
tions of the motor control. Therefore, the sensory sys-
tem of E. coli is expected to have a certain noise filtering
property, and several works have investigated impacts
of noise in information transmission and favorable traits
for noise filtering [16]. However, these works focused on
linear responses by ignoring the underlying biochemical
network and resultant nonlinear properties of the E. coli

sensory system. Even though some others considered a
possible biochemical implementation of an ideal noise-
immune system based on nonlinear filtering theory [17],
the correspondence with actual biological systems, espe-
cially that of the gradient sensing in chemotaxis, is still
elusive.
In this paper, we utilize nonlinear filtering theory to de-

rive a noise-tolerant gradient sensing dynamics and con-
sider its biochemical implementation in E. coli ’s cell. In
particular, we find that the derived optimal noise-filtering
system excellently coincides with the biochemical model
of the E. coli sensory system [9] and reproduces a non-
linear response relation measured experimentally.
As a minimal setting of the temporal gradient sens-

ing, we consider a run-tumble motion of E. coli on one
dimensional axis along with a monotonically increasing
ligand concentration. The gradient sensing in this setting
becomes the problem of determining whether the cell is
swimming up or down the gradient. This assumption is
mainly due to the limited capacity of the cell that may
not be able to recognize the three dimensional physical
space. Let ξt ∈ R and Xt ∈ {−1,+1} be the location
of the cell and the direction of swimming along the axis
at time t ∈ [0,∞). We assume that an E. coli cell runs
ballistically with a constant speed v > 0 as dξt/dt = vXt

and that each run and its direction is interrupted by a
stochastic tumbling motion. By approximating the tum-
bling motion as an instantaneous event[18], we model the
random changes in direction Xt due to tumbling with a
continuous-time Markov chain:

dpt

dt
=

(

−r r
r −r

)

pt, (4)

where pt = (P(Xt = +1),P(Xt = −1))T, r is the time-
independent transition rate between Xt = ±1, and the
initial condition is set as π := P(X0 = −1). Note that
the transition rate of direction Xt would be smaller than
the rate of tumbling event because each tumbling does
not always lead to the flipping of the direction.
Next, we assume that the ligand concentration depends

exponentially on the location as [L]t ∝ exp(cξt) where
c > 0 is a constant. This assumption is natural because
the spatial distribution of a ligand typically obeys diffu-
sion. Then, we set an observation process, Yt, that de-
fines the sensing information which can be obtained by
the E. coli ’s system about concentration, [L]t, at each
time t. By adding a noise term to the ligand-dependent
term in Eq. (2), we set

Yt := − log[L]t −
√
σWt (5)

where Wt is the standard Wiener process and σ is the in-
tensity of noise. It should be noted that Wt can also be
interpreted approximately as the noise from methylation
[19] because the methylation level mt additively appears
in Eq. (2). See supplementary material (SM) for other
possible ways of modeling ligand profile and noise prop-
erty and their consequences, which includes Refs. [20].

By applying the nonlinear filtering theory under the
above settings and assumptions [21], we can derive the
optimal way to infer Xt in the form of the following
stochastic differential equation:

dZt

dt
= −R(Zt − 1/2) +KZt(1 − Zt) ◦

dYt

dt
, (6)

where ◦ is the Stratonovich integral and the initial con-
dition is Z0 = π (See SM for details of derivation). This
equation describes the dynamics of posterior probability
Zt = P(Xt = −1 | Y0:t) of the descending direction given
the time series of the noisy sensing Y0:t := {Yt′ |t′ ∈ [0, t]}
when its parameter values match those of tumbling, run,
gradient, and noise as R = ROPT := 2r, K = KOPT :=
2vc/σ. The estimate for the current direction considered
here rather than future one is appropriate because E. coli
continuously modulates run and tumble that should de-
pend on whether it is currently swimming up or down
the gradient.

Under this set of the optimal parameter values, the first
term represents a model-based prediction, which works
as active forgetting because the current belief should be-
comes non-informative gradually due to the stochastic
change in direction Xt (Eq. (4)). Thereby, without the
second term (sensing signal), Zt converges to the sta-
tionary probability of the direction, 1/2, as t → ∞. The
second term corresponds to the update of the posterior
by new observation (Eq. (5)). Its form and coefficient are
determined depending on the settings of Yt (see SM for
detail). The optimal gain of this term, KOPT, describes
the signal-to-noise ratio (SNR) because σ and 2vc spec-
ify the noise intensity and the steepness of the temporal
change in the ligand concentration during a run, respec-
tively. When SNR is high, using sensing signal with large
K is beneficial, whereas when SNR is low, bet-hedging
according to the model prediction, Zt ≈ 1/2, with small
K becomes beneficial. We call the dynamics of Zt de-
scribed by Eq. (6) the filtering dynamics hereafter.

Next, we reveal the relation between the filtering dy-
namics and the biochemical network of E. coli chemotaxis
by demonstrating that Eq. (6) can be equivalent to Eqs.
(1),(2), and (3) if noise is neglected.

To this end, we introduce a coordinate transformation
from the posterior probability Zt to the log-posterior ra-
tio θt := log(1 − Zt)/Zt. From the chain rule for deriva-
tives, dθt/dt = (dθt/dZt)(dZt/dt), we obtain the follow-
ing equivalent representation of the filtering dynamics:

dθt
dt

= R
Zt − 1/2

Zt(1− Zt)
−K ◦ dYt

dt
. (7)



3

By defining a new variable µt for the prediction dynamics
as

dµt

dt
:= −R

κ

Zt − 1/2

Zt(1 − Zt)
, (8)

then we can formally integrate Eq. (7) as

θt = −κµt +K
[

log[L]t +
√
σWt

]

+ φ. (9)

where we use Eq. (5), φ := log{(1− π)/π}−K log[L]0 +
κµ0 is a constant of integration, and κ > 0 is an arbitrary
constant. Finally, Zt in Eq. (8) can be obtained by the
inverse transformation from θt to Zt:

Zt =
1

1 + exp(θt)
. (10)

These transformations unveil that Eqs. (10),(9), and
(8) for the filtering dynamics are equivalent to Eqs.
(1),(2), and (3) for the biochemical model of E. coli

chemotaxis, respectively (see also table S1 in SM for
comparison). Without violating this correspondence, a
degree of freedom can be introduced by a constant shift
of θt as θ̃t := θt + θ̄ where θ̄ ∈ R is the constant. We
obtain the following:

Z̃t :=
1

1 + exp(θ̃t)
,

θ̃t =θ̄ − κµt +K(log[L]t +
√
σWt) + φ,

dµt

dt
=− R

κ

{

Z̃t − 1/2

Z̃t(1− Z̃t)
e−θ̄ +

Z̃t

1− Z̃t

sinh(θ̄)

}

,(11)

(see SM about the class of transformations of θ with
which the correspondence is preserved). Note that there
is a one-to-one correspondence between a skewed pos-
terior probability Z̃t and Zt. Then, Z̃t corresponds to
the receptor activity at, and they are described by the
sigmoidal function of θ̃t and ft, respectively. The trans-
lated log-posterior ratio θ̃t is determined by the logarithm
of the ligand concentration [L]t and the prediction term
µt, which corresponds to the dependence of the free en-
ergy difference ft on the ligand concentration [L]t and
the methylation level mt in Eq. (2). Finally, the dy-
namics of prediction term µt corresponds to that of the
methylation level mt. Note that such a detailed corre-
spondence with the biophysical quantities have not been
derived in previous works based on the filtering theory
[16, 22] where E. coli was assumed to estimate a continu-
ous variable such as the direction of gradient, the ligand
concentration, or its temporal change rather than the bi-
nary variable Xt in our work. This fact may suggest that
the E. coli ’s system is adapted to sensing the binary or
discrete information rather than a continuous one.
Because the right-hand-side of Eq. (11) is a decreasing

function of Z̃t in the same way as the feedback function
F (at) of mt, µt works as a negative feedback compo-

nent to Z̃t. Even though F (at) in the biochemical model

cannot be determined theoretically but inferred only ex-
perimentally, the filtering dynamics provide a concrete
functional form of the feedback function, FOPT(Z̃) :=

−(R/κ){(Z̃t−1/2)/{Z̃t(1−Z̃t)}e−θ̄+Z̃t/(1−Z̃t) sinh(θ̄)}.
Thus, if E. coli has developed the sensory system be-
ing tolerant to sensing noise near optimally, the feedback
function F describing the methylation dynamics can have
a similar form as FOPT. To test this expectation, we com-
pare the feedback function FEXP inferred experimentally
by a FRET measurement [23] with the theoretically pre-
dicted FOPT by adjusting two free parameters R/κ and
θ̄. Figure 1 shows a notable agreement between the ex-
perimental data and theoretical prediction. Both FEXP

and FOPT share a characteristic nonlinearity; a gentle
slope around a = 0.5 and a sharp decline near a = 1.
From the view point of biochemical mechanism, the non-
linearity of FEXP cannot be reproduced by simple linear
or Michaelis-Menten models [8, 11] but by additionally
assuming a nonlinear regulation possibly due to phospho-
rylation of the demethylation enzyme, CheB [23]. This
result implies that the nonlinear E. coli chemotactic net-
work is designed structurally to be robust to the sensory
noise.

We further investigate whether the biochemical pa-
rameters observed experimentally in laboratory environ-
ments can satisfy the optimality in terms of filtering.

From the fitting of FOPT to FEXP, we have R/κ ≈
2.2 × 10−3. κ can be estimated as κ = αN ≈ 12 by
comparing Eq. (2) and Eq. (9) and by employing a
previous estimate of α and N [23]. Thus, R is calculated
as R ≈ 2.6×10−2. In contrast, the optimal ROPT can be
estimated as 10−0.5 ≤ ROPT ≤ 100s−1 by using ROPT =
2r and measurements of tumbling rate [2, 24]. Thus, the
obtained biochemical parameter R looks much smaller
than the estimate ROPT from tumbling measurements.

This discrepancy may be attributed to three possibili-
ties: First, experimental conditions for the measurements
of tumbling rate might not capture a wild condition
where E. coli cells are supposed to perform chemotaxis.
Recent studies suggest that swimming behaviors in poly-
meric solutions or soft agar are different from that un-
der a liquid condition used in most experiments [25]. In
particular, the tumbling frequency is shown to decrease
with addition of polymeric molecules due to remodeling
of signaling pathway downstream of sensory system or
possibly due to motor load. In such a case, ROPT may
take smaller value. Second, the values of R might be un-
derestimated because of the difficulty in estimating the
biochemical parameter N . Although we used an estimate
N = 6 in previous studies [7, 9, 23], other estimates of
N are larger, N = 15 ∼ 20 [7, 26]. Actually, R can
be estimated in another way without using an estimate
of N , and recent measurements estimate higher values,
R = 0.079 ∼ 0.11 [27], which is only a several-fold differ-
ence from ROPT. Moreover, the adaptation rate is shown
to increase several-fold with 10 ◦C increase of tempera-
ture ([23, 28]).

The last possibility is that the system is not or can-
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FIG. 1. Theoretically derived FOPT (red curve) fitted to the
experimentally obtained FEXP (black points) [23]. FOPT in
the figure is obtained by modulating two parameters, R and
θ̄, as R/κ ≈ 2.2 × 10−3 and 1/{1 + exp(θ̄)} ≈ 0.32 (see also
SM for the fitting procedure).

not be always optimized at the level of parameter values,
though it is so at the level of network structure. Besides
the discrepancy between R and ROPT, such possibility
should also be noted between N and KOPT. By con-
sidering the correspondence of N with the gain KOPT,
which is determined by the speed of swimming, the steep-
ness of gradient, and the intensity of sensing noise, op-
timal N should be variable depending on environmental
conditions. Several studies suggested that N as well as
other parameters are diversified in a population of cells
for hedging environmental uncertainties [29].

To perform chemotaxis under the limitation in pa-
rameter adjustment, the robustness against the mis-
match of parameters could be beneficial. We inves-
tigate whether such robustness is endowed or not by
examining the filtering dynamics with misspecified pa-
rameter values of K. We measure the performance of
the dynamics using mean square error (MSE) defined

as
[

1

T

∫ T

t=0
{Xt − (1− 2Zt)}2dt

]1/2

in which 1 − 2Zt =

1 − 2P(Xt < 0 | Y0:t) = E[Xt | Y0:t] holds for the opti-
mal parameter set. We define a reference value of K as
Kref := N = 6 according to the correspondence between
K and N . We set the swimming speed to a physiolog-
ically relevant value: v = 20µm · s−1. We define the
rate of directional changes as r = 0.1s−1 and the refer-
ence of the steepness of gradient as cref := 10−3µm−1

by taking into account the conditions in previous sim-
ulation studies [11]. We set R to the optimal value,
ROPT = 2r = 0.2s−1. As appropriate data are not
available for estimating the intensity of noise, σ, we
define the reference of σ as σref := 2crefv/Kref such
that the reference parameterKref becomes optimal under
c = cref and σ = σref [30]. Note that Kref is also opti-
mal on the half-line, (σ, c) = η(σref , cref), η > 0, because
2vc/σ = 2vcref/σref = Kref holds on it.

(A) (B)

(C) (D)

FIG. 2. MSEs of the filtering dynamics as a function of σ
with fixed c = cref (A), as a function of c with fixed σ = σref

(B), as a function of K and c with fixed σ = σref (C), and
as a function of σ and c with fixed K = Kref (D). Curves in
(A) and (B) represent MSEs with fixed parameter K = Kref

(blue) and with the optimal parameter K = KOPT = 2vc/σ
(red). White lines in (C) and (D) represent the parameter
region on which the parameterK is set optimal i.e. 2vc/σref =
K (C) and 2vc/σ = Kref (D).

Figure 2 shows MSEs of Eq. (6) for different K as
functions of σ with fixed c = cref (A) and as functions
of c with fixed σ = σref (B). The error with fixed K is
always greater than or equal to that with K adjusted to
KOPT. For each fixed gain K, MSE monotonously in-
creases as SNR decreases either by the increase in the
noise intensity σ (Fig. 2(A)) or by the decrease in the
gradient steepness c (Fig. 2(B)), indicating that a greater
SNR than the optimal one never impair the performance
of the dynamics for any K. We can see a similar trend in
Fig. 2 (C) and (D). These results indicate that even un-
der the misspecification of K associated with parameters
σ and c, the filtering dynamics still reliably and robustly
estimate temporal gradient if a change in σ or c is one
such that it increases SNR (See also SM for the robust-
ness against the discrepancy between R and ROPT).

The results of simulation also suggest how K can be
chosen when the value of KOPT is uncertain. With the
small value of K, variation of MSE between low and high
SNRs is small (Fig. 2). In contrast, large K shows a sig-
nificant variation in MSE between low and high SNR
cases. This means that low K can work moderately
well for most of conditions whereas large K can work
much better if the environmental SNR is large enough
at the cost of lower performance under low SNR situa-
tions. Thus, when there is uncertainty about KOPT, K
also modulates the balance of risk-averting and -taking
strategies of sensing.

The growth-dependent variability of K can coordinate
such risks at the level of population [32]. Moreover, N ,
which biochemically corresponds to K, is suggested to
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vary temporally at the single-cell-level [26, 33] via a re-
ceptor cluster rearrangement. The integration of bio-
chemical modeling and optimal filtering theory may play
a pivotal role in further analysis of such a gain adaptation
and learning at both single-cell and population levels.
Besides deriving the desirable properties for filtering,

our approach provides a prediction about what type of
environments the E. coli ’s sensory system may adapt to.
In SM, we additionally show that the filtering dynamics
optimized to an exponential profile can explain an ex-
perimental data of chemotactic trajectories better than
that optimized to a linear gradient. This result may sug-
gest that the E. coli ’s biochemical system is adapted to
the exponential gradient profile. Such prediction may be
validated more definitely by comparing the behavior of
the optimal filtering model with the swimming direction
and the receptor activity measured simultaneously under
different environmental conditions.
This approach may also be applied to other sensory

systems; allosteric receptors with a negative feedback,
e.g., G protein-coupled receptors for vision and EGF re-
ceptor in animal cells; spatial and temporal sensing by
ameboid cells and worms. By considering the array of
such sensory systems, we may be able to further validate
the power of optimal filtering approach [22].
Finally, we should mention that our model has not yet

incorporated the potential dependence of the directional
dynamics dpt/dt on sensing history Y0:t via the signal-
dependent motor regulation. While the dependency can
be ignored when the gradient is weak enough, it can af-
fect the optimal behaviors, otherwise. Thus, a next cru-
cial challenge is extending our approach so as to directly
incorporate the closed cycle between sensing and control.
Such extension might fill the remaining gaps between the
current theory and experimental observations.
We would like to thank Keita Kamino for a fruitful

discussion. This research is supported by JSPS 19H05799
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