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We present a many-body theory of exciton-trion-polaritons (ETPs) in doped two-dimensional
semiconductor materials. ETPs are robust coherent hybrid excitations involving excitons, trions,
and photons. In ETPs, the 2-body exciton states are coupled to the material ground state via
exciton-photon interaction and the 4-body trion states are coupled to the exciton states via Coulomb
interaction. The trion states are not directly optically coupled to the material ground state. The
energy-momentum dispersion of ETPs exhibit three bands. We calculate the energy band dispersions
and the compositions of ETPs at different doping densities using Green’s functions. The energy
splittings between the polariton bands, as well as the spectral weights of the polariton bands,
depend on the strength of the Coulomb coupling between the excitons and the trions and which in
turn depends sensitively on the doping density. The doping density dependence of the ETP bands,
and the charged nature of the trion states, could enable novel electrical and optical control of ETPs.

Very recently, signatures of coherent hybrid excitations
involving excitons, trions, and photons in doped two-
dimensional (2D) materials have been reported in the
literature [1–5]. Although there is no consensus yet on
the nature of these hybrid excitations [1–6], these exper-
imental findings are interesting as they call into question
the traditional description of a trion as a bound 3-body
fermionic state [9–13] consisting of an exciton and a free
charge carrier since a fermionic state cannot exist in a
coherent superposition with a photon, which is a boson.
Several heuristic models to describe these polaritons have
been proposed in the literature [1–8]. As discussed in de-
tail in the Supplementary Material [14], these models fall
short of describing ETPs accurately and their shortcom-
ings stem from incomplete descriptions of the exciton and
trion states in doped semiconductors. The Supplemen-
tary Material also includes additional references [15–20].

Several recent works have contributed to clarifying the
nature of excitons and trions in doped semiconductors
[5, 22–26]. Recently, the authors have presented a model
based on two coupled Schrödinger equations to describe
2-body excitons and 4-body trions in electron-doped 2D
materials [22, 23]. A 4-body bound trion state consists
of a conduction band electron-hole pair bound to an ex-
citon. The two Schrödinger equations are coupled as a
result of Coulomb interactions between the excitons and
the trions in doped materials. Good approximate eigen-
states of the coupled system can be constructed from
superpositions of exciton and trion states. This super-
position includes both bound trion states as well as un-
bound trion states. The latter are exciton-electron scat-
tering states (Fig. 1(a)). These superposition states re-
semble the exciton-polaron variational states proposed
by Sidler et al. [5, 24]. The model developed by the au-
thors [22, 23], rather interestingly, also showed that the
4-body trion states have no direct optical matrix elements
with the material ground state. The contribution to the
material optical conductivity from trion states results al-
most entirely from the latter’s Coulomb coupling to the
2-body exciton states [23] (see Fig. 1(a)).

FIG. 1. (a) The nature of couplings among bound and un-
bound trion states, exciton states, the material ground state,
and photons in exciton-trion-polaritons (ETPs) are depicted
for an electron-doped 2D material (MoSe2) [22, 23]. (b) A 2D
material monolayer embedded inside an optical microcavity.

In this paper, we present a many-body theory of ETPs
in 2D materials [22, 23]. The optical coupling between
the excitons and the material ground state and the
Coulomb coupling between the trions and the excitons
result in robust ETPs. The quantum state of ETPs is
a coherent superposition of exciton, trion, and photon
states. Since the 4-body trion states also include the
continuum of exciton-electron scattering states (or un-
bound trion states), the polariton problem requires a
many-body approach for its complete and accurate de-
scription. In the simplest case considered in this work,
ETPs exhibit three bands in their energy-momentum dis-
persion. The energy splittings between these bands, as
well as the spectral weights of these bands, depend on the
strength of the Coulomb coupling between the excitons
and the trions and which in turn depends on the doping
density. Furthermore, exciton-electron scattering, which
is inevitable at large electron densities, results in large
broadening of the polariton band closest in energy to the
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continuum of exciton-electron scattering states (or un-
boud trion states).

Although the focus in this paper will be on electron-
doped 2D transition metal dichalcogenide (TMD) MoSe2,
the arguments are kept general enough to be applicable to
other 2D materials. We consider a 2D material monolayer
embedded inside an optical microcavity (Fig.1(b)). The
Hamiltonian describing electrons and holes in the TMD
layer (near the K and K ′ points in the Brillouin zone)
interacting with each other and with a TE-polarized (in-
plane-polarized) cavity optical mode of in-plane momen-

tum ~Q in the rotating wave approximation is [21–23, 30–
32],

H =
∑
~k,s

Ec,s(~k)c†s(
~k)cs(~k) +

∑
~k,s

Ev,s(~k)b†s(
~k)bs(~k)

+
1

A

∑
~q,~k,~k′,s,s′

U(q)c†s(
~k + ~q)b†s′(

~k′ − ~q)bs′(~k′)cs(~k)

+
1

2A

∑
~q,~k,~k′,s,s′

V (q)c†s(
~k + ~q)c†s′(

~k′ − ~q)cs′(~k′)cs(~k)

+ h̄ω( ~Q)a†( ~Q)a( ~Q)

+
1√
A

∑
~k,s

(
gsc
†
s(
~k + ~Q)bs(~k)a( ~Q) + h.c

)
(1)

Here, Ec,s(~k) and Ev,s(~k) are the conduction band (CB)
and valence band (VB) energies. s, s′ represent the
spin/valley degrees of freedom in the 2D material. s =
{σ, τ}, where σ = ±1 and τ = ±1 represent spin and
valley degree of freedom, respectively. me (mh) is the
electron (hole) effective mass. U(~q) represents Coulomb
interaction between electrons in the CB and VB and
V (~q) represents Coulomb interaction among the electrons

in the CB. h̄ω( ~Q) is the photon energy, and gs is the
electron-photon coupling constant. gs is assumed to be
non-zero only for the case of the optical coupling between
the top most valence band and the conduction band of
the same spin (for s = {+1,+1} or s = {−1,−1}). Other
than for phase factors that are not relevant to the discus-
sion in this paper, the non-zero values of gs can be written

as [31, 32], g = |gs| = evχ(z = 0)

√
h̄/(2〈ε〉ω( ~Q)), where,

v is the interband velocity matrix element [21, 30–32],
χ(z) describes the amplitude of the optical mode in the
z-direction (Fig. 1(b)), and 〈ε〉 is the average dielectric
constant experienced by the cavity optical mode.

The energy dispersion of ETPs can be found from
the poles of the retarded photon Green’s function

Gph( ~Q, t) = −(i/h̄)θ(t)〈[a( ~Q, t), a†( ~Q, 0)]〉, which satis-
fies,[
h̄ω( ~Q)− iγp + ih̄

∂

∂t

]
Gph( ~Q, t) = δ(t)−

√
2g√
A

∑
~k

Gex−ph
~Q,T

(~k; t)

(2)
Here, 2γp is the inverse photon lifetime in the optical

cavity, and,

Gex−ph
~Q,T

(~k; t) = − i
h̄
θ(t)〈

[
P †~Q,T

(~k; t), a†( ~Q, 0)
]
〉 (3)

P~Q,T (~k; t) is the transverse polarization operator. In 2D

TMDs, one can form superpositions of exciton states
from both valleys that couple selectively to either TE-
or TM-polarized optical modes [31, 32]. For trans-
verse excitons, which couple only to TE-polarized modes,

P~Q,T (~k; t) equals,

P~Q,T (~k; t) =
1√
2

∑
s

gs
g
c†s(
~k + ~Q, t)bs(~k, t) (4)

The polarization operator can be obtained from the
coupled exciton and trion equations given by Rana et
al. [22, 23]. Assuming, for simplicity, that the optical
mode is coupled to only the n-th exciton state in each
valley (typically n = 0 state, the lowest energy exciton
state, is of interest), the result for the photon Green’s
function is found to be,

[Gph( ~Q, ω)]−1 = h̄ω − h̄ω( ~Q) + iγp − Σph( ~Q, ω) (5)

where photon self-energy Σph( ~Q, ω) is,

Σph( ~Q, ω) =
∑
s

/G
ex
n,s( ~Q, ω)

×

∣∣∣∣∣gs
∫

d2~k

(2π)2
φex
n, ~Q

(~k + λh ~Q)

√
1− fc,s(~k + ~Q)

∣∣∣∣∣
2

(6)

Here, φex
n, ~Q

(~k + λh ~Q) is the eigenfunction of the n-th ex-

citon state [22, 23]. λh = 1 − λe = mh/mex, mex =

me + mh, and fc,s(~k) is the occupation probability for
the CB electron states. The bare exciton Green’s func-
tion /G

ex
n,s(

~Q, ω) (which does not include contribution to
the exciton self-energy from exciton-photon interaction)
appearing in (6) is,

[/G
ex
n,s( ~Q, ω)]−1 = h̄ω−Eex

n,s( ~Q)+iγex−Σex
n,s( ~Q, ω)

∣∣∣
tr

(7)

In the above expression, Eex
n,s(

~Q) is the energy of the n-th
exciton state of spin/valley s [22, 23], γex describes the
rate of coherence decay of the exciton polarization due
to all processes other than exciton-electron scattering.
The latter is included explicitly in the exciton self-energy

Σex
n,s( ~Q, ω)|tr [22, 23]. Exciton-electron interaction can

be described in terms of exciton-trion coupling [22, 23],
including couplings to both bound and unbound 4-body
trion states. Expression for the exciton self-energy was
found by Rana et al. [22],

Σex
n,s( ~Q, ω)

∣∣∣
tr

=
∑
m,s′

Σex
n,m,s,s′( ~Q, ω)

∣∣∣
tr

=
∑
m,s′

(1 + δs,s′)
∣∣∣Mn,m,s,s′( ~Q)

∣∣∣2
h̄ω − Etr

n,m,s,s′(
~Q) + iγtr

(8)
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The expressions for the Coulomb matrix elements

Mn,m,s,s′( ~Q), coupling 2-body exciton states with
spin/valley s to 4-body trion states with spin/valley s, s′,
can be found in a previous paper by Rana et al. [22]. The
summation over m above implies a summation over all
bound and unbound 4-body trion states consistent with

the values of s and s′. Etr
n,m,s,s′(

~Q) is the energy of a
4-body trion state and γtr is a phenomenological param-
eter describing the decay of the coherence of four-body

correlations. Σex
n,s( ~Q, ω)|tr is an increasing function of

the doping density [22]. The photon self-energy in (6)
can be written in terms of the optical conductivity of the
2D material [22, 23],

Σph( ~Q, ω) = −ih̄ |χ(z = 0)|2

2〈ε〉
σ( ~Q, ω) (9)

The dispersion of ETPs can be obtained from the poles
of the photon Green’s function.

Hopfield coefficients [29, 33] play an important role
in describing the composition of polariton states. In
the case of ETPs, the same information is provided by
the spectral density functions, which we discuss next.

The photon spectral density function Sph( ~Q, ω) equals

−2h̄Im
{
Gph( ~Q, ω)

}
. The spectral density Sex

n,T ( ~Q, ω) of

the transverse exciton equals −2h̄Im
{
Gex

n,T ( ~Q, ω)
}

. As-

suming Eex
n,s( ~Q) = Eex

n,−s( ~Q) and |gs| = |g−s|, the trans-

verse exciton Green’s function Gex
n,T ( ~Q, ω) is found to be,

[Gex
n,T ( ~Q, ω)]−1 = h̄ω − Eex

n,s( ~Q) + iγex − Σex
n,s( ~Q, ω)

∣∣∣
tr

− Σex
n,T ( ~Q, ω)

∣∣∣
ph

(10)

The spin/valley index s on the right hand side stands
for any one of the two values for which |gs| 6= 0, and the
exciton-photon interaction contribution to the transverse
exciton self-energy is,

Σex
n,T ( ~Q, ω)|ph =

∑
s

∣∣∣∣gs ∫ d2~k
(2π)2

φex
n, ~Q

(~k + λh ~Q)

√
1− fc,s(~k + ~Q)

∣∣∣∣2
h̄ω − h̄ω( ~Q) + iγp

(11)

We now assume that only a single bound 4-body singlet
trion state of index m exists (m = 0 implies the lowest
energy bound trion state), and it exists only when the ex-
citon and the bound CB electron-hole pair pair belong to
different valleys (as is the case in MoSe2) [22]. We define
a 4-body bound transverse trion state as the one formed
by the binding of a CB electron-hole pair to a trans-
verse exciton [22]. Finally, the spectral density function

for the bound transverse trion state is Str
n,m,T ( ~Q, ω) =

−2h̄Im
{
Gtr

n,m,T ( ~Q, ω)
}

, where the Green’s function of
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FIG. 2. Calculated real part of the optical conductivity,
σ( ~Q = 0, ω), for in-plane (TE) light polarization, is plotted for
three different electron densities (ne = 1010, 2× 1012, 8× 1012

cm−2) for electron-doped monolayer 2D MoSe2. Only the
lowest energy exciton state is considered in the calculations.
The spectra are all normalized to the peak optical conduc-
tivity value at zero electron density. T = 5K. The frequency
axis is offset by the exciton energy Eex

n=0,s( ~Q = 0). The posi-
tion of the cavity optical mode is also indicated (see Fig. 3).
Two prominent peaks are seen in the absorption spectra when
the electron density exceeds ∼ 1012 cm−2. Each peak corre-
sponds to a state that is a superposition of exciton and trion
states [22]. The spectral weight shifts from the higher en-
ergy peak to the lower energy peak with the increase in the
electron density.

the 4-body bound transverse trion state is,

[Gtr
n,m,T ( ~Q, ω)]−1 = h̄ω − Etr

n,m,s,−s( ~Q) + iγtr

−Σtr
n,m,T ( ~Q, ω) (12)

Here,

Σtr
n,m,T ( ~Q, ω) =∣∣∣Mn,m,s,−s( ~Q)

∣∣∣2
h̄ω − Eex

n,s( ~Q) + iγex − Σex
n,T ( ~Q, ω)|ph

−
∑

m′ 6=m,s′

Σex
n,m′,s,s′(

~Q, ω)|tr

(13)

As before, the spin/valley index s on the right hand sides
in (12) and (13) stands for any one of the two values for
which |gs| 6= 0.

For simulations, we consider an electron-doped mono-
layer of 2D MoSe2 inside an optical microcavity, as shown
in Fig. 1(b). In monolayer MoSe2, spin-splitting of the
conduction bands is large (∼35 meV [34]) and the low-
est conduction band in each of the K and K ′ valleys is
optically coupled to the topmost valence band [36]. We
assume me = mh = 0.7mo, which agrees with the re-
cently measured value of 0.35mo for the exciton reduced
mass [37]. The cavity optical mode has a parabolic dis-
persion with a photon mass of 10−5mo. |χ(z = 0)|2 = 10
µm−1. We use a wavevector-dependent dielectric con-
stant ε(~q), appropriate for 2D materials [21, 22], to screen
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FIG. 3. Calculated exciton-trion-polariton (ETP) energy dis-
persions (dashed lines) and the spectral densities of the pho-

ton (Sph( ~Q, ω)), the transverse exciton (Sex
n=0,T ( ~Q, ω)), and

the transverse bound trion (Str
n=0,m=0,T ( ~Q, ω)), are plotted for

three different electron densities (ne = 1010, 2× 1012, 8× 1012

cm−2) for an electron-doped monolayer 2D MoSe2 inside an
optical cavity (Fig.1(b)). In each case, the cavity optical mode
is tuned ∼ 20 meV below the lower energy peak in the optical
absorption spectra (as indicated in Fig. 2). T=5K. The unit
in the colorbar is 10−13 s.

the Coulomb potentials. We assume that γex = γtr =
γp ∼ 6 meV [35]. We compute exciton and trion eigen-
functions and eigenenergies for different momenta and
electron densities as described by Rana et al. [22].

Fig. 2 shows the real part of the optical conductivity
(optical absorption spectra) for three different electron
densities and Fig. 3 shows the corresponding polariton
dispersions (dashed lines) as well as the spectral densi-

ties of the photon, the transverse exciton, and the trans-
verse bound trion. We assume in simulations that the
cavity optical mode is tuned ∼ 20 meV below the lower
energy peak in the optical absorption spectra (as indi-
cated in Fig. 2. At the lowest electron density (n = 1010

cm−2), the lower energy peak in the optical absorption
spectrum has essentially no optical oscillator strength
and all the spectral weight lies in the higher energy peak
(which is the only one seen in Fig. 2(a)). The higher
and lower energy states at such small electron densities
correspond to essentially pure exciton and pure (bound)
trion states, respectively [22]. The resulting polariton
dispersion shows two bands, UP (upper polariton) and
LP (lower polariton), which represent exciton-polaritons
(Fig.3(a,b)). The bound trion states do not form polari-
tons as they have no oscillator strength. When the elec-
tron density increases beyond ∼ 1012 cm−2, exciton and
trion states become coupled as a result of strong Coulomb
interactions, and the resulting optical absorption spec-
tra show two prominent peaks (Fig. 2(b)). Each peak
corresponds to a state that is a superposition of 2-body
exciton and 4-body (bound) trion states [22]. The polari-
ton dispersion for n = 2× 1012 cm−2 shows three bands,
UP, MP (middle polariton), and LP (Fig.3(d,e,f)). The
Rabi splitting between the LP and MP bands is however
small and reflects the fact that the lower energy peak in
the optical absorption spectra (Fig. 2(b)) does not have
much optical oscillator strength. As the electron density
increases further, the spectral weight continues to shift
from the higher energy peak in the absorption spectrum
to the lower energy peak and, in addition, the higher
energy peak broadens, becomes non-Lorentzian, and de-
velops a pedestal as a result of exciton-electron scatter-
ing (i.e., Coulomb coupling of the exciton and unbound
trion states). This pedestal is visible on the higher en-
ergy side of the peak in Fig. 2(c) for n = 8× 1012 cm−2.
When n = 8 × 1012 cm−2, the increase in the oscillator
strength of the lower energy peak is reflected in the large
Rabi splitting between the LP and MP polariton bands in
Fig. 3(g,h,i). Also visible in Fig. 3(g,h,i) is the extremely
large broadening of the UP band from dephasing caused
by exciton-electron scattering at this large doping den-
sity. The spectral densities obey the following sum rule,∫
dω

2π

[
Sph( ~Q, ω) + Sex

n=0,T ( ~Q, ω) + Str
n=0,m=0,T ( ~Q, ω)

]
= 3

(14)
The results presented in this paper highlight the im-

portant role played by the Coulomb interaction between
trions and excitons in coupling trions and photons to en-
able ETPs. Since this Coulomb interaction depends on
the doping density, the spectral weights and the energies
of ETP bands can be modified in a significant way by
varying the doping density, as shown in Fig. 3. The elec-
tron density in 2D TMD materials can be varied from
zero to mid-1013 cm−2 by electrostatic gating thereby
opening up opportunities for novel electrically controlled
polariton devices. The 4-body trion component of ETPs
contains a tightly bound charged 3-body complex sur-
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rounded by a Fermi hole (Fig. 1). This Fermi hole is not
too different from the exchange hole that surrounds ev-
ery electron in an electron-doped semiconductor [41, 42].
One can therefore expect ETPs to move in response
to electrochemical potential gradients by virtue of their
trion component thereby enabling electrical control over
polariton dynamics. Electrical/optical transport exper-
iments performed on exciton-trion superposition states
in semiconductor quantum wells support this conjec-
ture [43]. In exciton-polaritons, polariton-polariton in-
teractions and polariton relaxation processes, which play
an important role in polariton lasers and condensates,
are determined by their exciton component [38, 39]. In
ETPs, both exciton and trion components will deter-
mine polariton interactions. Experimental efforts geared
towards understanding these interactions have been re-
cently reported [2, 40]. An accurate description of the
structure and composition of ETPs, as attempted in

this work, will be critical in understanding and model-
ing these interactions. The direct Coulomb interaction
between excitons is weak due to their charge-neutral na-
ture and short-range exchange interactions tend to dom-
inate [38]. In contrast, the direct Coulomb coupling be-
tween trions, although screened by the Fermi holes, is
expected to be stronger and could play an important
role in polariton-polariton interactions. These interac-
tions are expected to be also strongly affected by phase
space filling effects (at large electron/hole densities) and
doping depletion effects (at large polariton densities). We
expect that the work presented in this paper will stim-
ulate further exploration of the physics and applications
of ETPs in 2D materials.
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