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We investigate the optical properties of the normal state of the infinite-layer La1−xSrxNiO2 us-
ing DFT+DMFT. We find a correlated metal which exhibits substantial transfer of spectral weight
to high energies relative to the density functional theory. The correlations are not due to Mott
physics, which would suppress the charge fluctuations and the integrated optical spectral weight as
we approach a putative insulating state. Instead we find the unusual situation, that the integrated
optical spectral weight decreases with doping and increases with increasing temperature. We con-
trast this with the coherent component of the optical conductivity, which decreases with increasing
temperature as a result of a coherence−incoherence crossover. Our studies reveal that the effective
crystal field splitting is dynamical and increases strongly at low frequency. This leads to a picture
of a Hund’s metallic state, where dynamical orbital fluctuations are visible at intermediate energies,
while at low energies a Fermi surface with primarily dx2−y2 character emerges. The infinite-layer
nickelates are thus in an intermediate position between the iron based high temperature supercon-
ductors where multiorbital Hund’s physics dominates, and a one-band system such as the cuprates.
To capture this physics we propose a low-energy two-band model with atom centered eg states.

Introduction— The recent discovery of superconduc-
tivity in the infinite-layer nickelates, Nd1−xSrxNiO2 [1],
has attracted intensive interests due to material sim-
ilarities with high-Tc cuprate superconductors. Sev-
eral follow-up experiments confirmed the superconduc-
tivity [2–6], with some possibly contradictory observa-
tions [7, 8]. Nomura et al. estimated the electron-phonon
coupling mediated Tc to be ∼ 0.1 K [17], much less than
the observed Tc ≈ 15 K, showing the mechanism for su-
perconductivity is unconventional thus electron correla-
tions play an important role.

There are many experimental investigations into the
infinite-layer nickelates [1–16] and multiple theoretical
techniques have been applied to study their electronic
structure [17–27, 29–49]. On the theory side, three
different views of these materials are emerging. In
the first one, the infinite-layer nickelate has a cuprate-
like correlated dx2−y2 band near a Mott transition
and an additional uncorrelated “spectator” band near
the Fermi level which provides self-doping and is sup-
ported by density functional theory (DFT) [17–21], DFT
plus dynamical mean-field theory (DFT+DMFT) [22–
24], and model calculations [21, 25, 26]. The sec-
ond suggests that multiorbital effects are important as
for example Hund’s physics, using DFT+DMFT [27],
GW+DMFT [28, 29], and model studies [30–33]. A third
approach invokes Kondo physics between correlated and
uncorrelated bands. This is supported by DFT [34],
DFT+Gutzwiller [35], DFT+DMFT [35, 36], and model
calculations [37, 38]. In this paper we present a fourth
perspective, incorporating ideas from the first two view-
points. Here frequency renormalization of the crystal
fields plays a major role and results in Hund’s multior-
bital physics present at intermediate energies, but hidden

at low energies. This is a new prototype for a strongly
correlated metal.

To reach this conclusion we perform fully charge
self-consistent DFT+DMFT calculations [50–53] imple-
mented in the all-electron full-potential Wien2k pack-
age [54] with the exact double counting scheme [55]
(see computational details in Supplementary Material
(SM) [56]). This approach was recently shown to give
results consistent with the occupancies measured in high-
energy spectroscopies [14, 27, 29]. Here we focus on the
basic electronic structure of the infinite-layer nickelates
to extract the basic physics of this class of compounds.
We give special attention to the optical conductivity. Ex-
periments in this were crucial in identifying early on the
origin and nature of electronic correlations in different
archetypical systems [57].

Results: Optical Conductivity— The DFT+DMFT op-
tical conductivity is computed with the formalism pre-
sented in Refs. [53, 56] and is shown in Fig. 1 with the
DFT reference provided for comparison. The optical con-
ductivity consists of a Drude weight and interband tran-
sitions at ∼3.5, ∼6, and ∼8.5 eV. The former corresponds
to a transition from Ni 3d to La 4f orbitals and the last
two correspond to transitions from O 2p to La 4f or-
bitals [56].

The temperature(T )-dependent optical conductivity is
displayed in Fig. 2(a). The Drude peak develops grad-
ually upon cooling, resulting in a decrease of the resis-
tivity ρ as shown in the inset of Fig. 2(a). The com-
puted ρ follows a T 2 behavior, found experimentally at
intermediate temperatures [12]. At lower temperatures
a resistivity upturn below T ∼ 100 K is observed in ex-
periments [1, 12, 13] which we ascribe to disorder effects
which are not included in the calculations.
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FIG. 1. Optical conductivity of LaNiO2 in a broad ω fre-
quency range computed within both DFT and DFT+DMFT
methods. The inset is provided to magnify the Drude weight.

Results: Integrated Optical Spectral Weight— To un-
derstand the physics of this material we analyze the in-

tegrated spectral weight K(Ω) =
∫ Ω

0
σ1(ω)dω as a func-

tion of the cutoff frequency Ω [57]. Figure 2(b) displays
K(Ω) for DMFT normalized to the DFT Drude weight.
The ratio of KDMFT(Ω)/KDFT decreases upon heating
for low cutoff Ω (less than ∼50 meV) as a result of the
broadening of the Drude peak. Above this cutoff, the
integrated spectral weight increases with increasing tem-
perature. The integrated spectral weight up to Ωc =
0.369 eV (chosen to exclude a contribution from inter-
band transitions) in DMFT is about 0.6 of the DFT value
at T = 116 K. Part of the lost weight in the Drude peak is
transferred to a low-energy interband transition around
∼0.5 eV as shown in Fig. 1.

The reduction of KDMFT/KDFT depicted in Fig. 2(b)
demonstrates the significance of electronic correlations
which reduces the electronic kinetic energy. For LaNiO2,
KDMFT/KDFT = 0.5 − 0.6 at Ωc, thereby suggesting
that it is a (moderately) correlated metal. The kinetic
energy ratio is comparable to Hund metal compounds
such as LaFePO and SrRuO3 [57]. It is noteworthy
that KDMFT/KDFT ≈ 0 for cuprates of La2CuO2 and
Nd2CuO4, those are charge-transfer insulators, and ∼0.2
for La2−xSrxCuO2 (x = 0.1, 0.15, 0.2) [58]. In addi-
tion, in the paramagnetic metallic phase of V2O3, which
ia a prototypical Mott system, KDMFT/KDFT ≈ 0.2 [57].
Based on the values of KDMFT/KDFT, LaNiO2 is far from
a Mott system, but close to a Hund’s metal.

Notice that the behavior of KDMFT/KDFT of LaNiO2

as a function of temperature (when Ω is large) is the oppo-
site of what is observed in canonical Mott insulating sys-
tems such as V2O3 where KDMFT(Ω) (or KDMFT/KDFT)
decreases upon heating (within the paramagnetic metal-
lic phase) [59] (see details in SM [56]). This reflects the
fact that the kinetic energy is reduced as an insulating
state is approached at higher temperatures. Therefore,
LaNiO2 is far from a Mott system and closer to a Hund’s
system such as BaFe2As2 [74, 75].
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FIG. 2. (a) Temperature-dependent optical conductiv-
ity of LaNiO2 calculated within DFT+DMFT. The ω-axis
is presented in a logarithmic scale. The calculated resistiv-
ity provided in the inset shows the T 2 behavior. The blue
dash-dotted line in the inset is a guide for the eye by fit-
ting ρxx to a parabolic function. (b) The kinetic energy ratio
KDMFT(Ω)/KDFT as a function of integration cutoff value Ω
provided for several temperatures. The vertical dotted line is
the kinetic energy integration cutoff Ωc = 0.369 eV chosen to
exclude a contribution from interband transitions. (c) Quasi-
particle weight Z for Ni dx2−y2 , dz2 , and dxz/dyz orbitals as
a function of temperature. Error bars originate from the sta-
tistical errors in CTQMC simulations. The dash-dotted lines
in (c) are guides for the eye by fitting Z to a linear function.
(d) The effective plasma frequency square (ω∗p)2 and (e) the
effective quasiparticle scattering rate 1/τ∗tr extracted from the
computed optical conductivity within DFT+DMFT by using
the formalism in Ref. [59].

Results: Orbital Character— We now turn to the or-
bital character of the different contribution to the optical
features. First we analyze the quasiparticle weight Z as
a function of T as depicted in Fig. 2(c) [76]. Ni dx2−y2

has the smallest Z which is drastically smaller than the
other 3d orbitals having Z ≈ 0.8. Notice the strong tem-
perature dependence of Z which increases linearly upon
heating, a clear correlation effect, which implies the tem-
perature dependence of the effective mass of the resilient
quasiparticles [77, 78]. In contrast, the other orbitals
have very weak or no temperature dependence as shown
in the inset of Fig. 2(c). Hence, strong differentiation
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FIG. 3. (a) Doping-concentration-dependent optical con-
ductivity of La1−xSrxNiO2 calculated within DFT+DMFT
at T = 116 K. (b) The integrated optical spectral weight
K(Ω) as a function of cutoff frequency Ω provided for several
doping concentration x.

between the correlated dx2−y2 band and an uncorrelated
band with different orbital characters is present in this
system.

The Drude peak could be decomposed into two char-
acters: the correlated Ni dx2−y2 and an uncorrelated
hybridized band which includes Ni dz2 and dxz/dyz or-
bitals [56]. It illustrates the multiorbital feature of
LaNiO2. The dominant component of the Drude peak
is the correlated dx2−y2 which exhibits strong tempera-
ture dependence as shown in Z. The remaining contri-
bution originates from the uncorrelated hybridized band
that are almost temperature independent. Therefore, T -
dependent width of the Drude peak is almost solely de-
termined by the electronic correlation exhibited in the
dx2−y2 band.

To gain more insight into the physics of the infinite-
layer LaNiO2, we perform a low-energy extended Drude
analysis to extract the effective plasma frequency ω∗

p and
quasiparticle scattering rate 1/τ∗tr from the computed op-
tical conductivity [59]. In the multiband situation it
is useful to decompose the Drude peak into two con-
tributions, one coming from the correlated dx2−y2 and
the second from the uncorrelated hybridized band. The
dc conductivity, therefore, can be written as a sum of
the two contributions: σ =

∑
i(ω

∗
p,i)

2τ∗tr,i/4π, where i

is a band index. Figures 2(d) and (e) show (ω∗
p)2 and

1/τ∗tr for each band component as a function of temper-
ature. The uncorrelated hybridized band shows almost
temperature independent (ω∗

p)2 and 1/τ∗tr. In contrast,
(ω∗

p)2 for dx2−y2 shows a linear temperature dependence
up to T ∼ 300 K where it saturates at the coherence-
incoherence crossover, and was also observed in ruthen-
ates [79] (see Section XII in SM [56]). The temperature
dependence in (ω∗

p)2 can be related to the temperature
dependence of Z discussed above. The quasiparticle life-
time 1/τ∗tr for dx2−y2 is approximately parabolic in tem-
perature below the coherent temperature and shows a de-
viation from the quadratic behavior above the coherence-
incoherence crossover temperature.

Results: Doping Dependence— Now, we turn our
attention to Sr-doped LaNiO2, where Sr doping pro-
vides holes to LaNiO2. Figure 3(a) shows the
doping-concentration(x)-dependent optical conductivity
of La1−xSrxNiO2. The Drude peak and the integrated
optical spectral weight K(Ω) decrease with increasing
doping as depicted in Fig. 3. Since K(Ω) is proportional
to the electronic kinetic energy, it indicates the decrease
of the kinetic energy upon doping. This behavior is the
opposite of what is observed in a Mott system where dop-
ing increases the electronic kinetic energy [57, 80]. This
provides further evidence of that La1−xSrxNiO2 is far
from a Mott transition. Mott-like behavior was reported
in recent GW+DMFT calculations [29].

The decrease in the kinetic energy originates from the
fact that the low-energy carrier number, ne, defined by
the volume of the Fermi surface, decreases upon doping
as presented in Table I. Note that two distinct charge car-
riers are realized in the Fermi surface, those are the cor-
related Ni dx2−y2 and the uncorrelated hybridized band
with Ni dz2 (see Fig. 4). ne for dx2−y2 decreases sig-
nificantly upon doping while ne for the uncorrelated hy-
bridized band is small and varies less. From the per-
spective of ne, the doped holes mostly go to the dx2−y2

band [81].

It is important to distinguish the high-energy d occu-
pancy, which is measured in x-ray spectroscopy [14] and
has been shown to be independent of doping [27], from
the low-energy occupancy ne that decreases with increas-
ing hole doping. This effect, which competes with an in-
crease in Z with increasing hole doping [27], dominates
the behavior of the kinetic energy.

Results: Electronic Structure— The dependence of
the k-resolved spectral function with doping is shown in
Fig. 4(a). The dominant character at the Fermi level EF

is dx2−y2 and gives a large Fermi surface (FS) shown in
Fig. 4(b). The uncorrelated hybridized band gives small
FSs at Γ and A. Hence, the multiorbital character is
clearly seen in the calculations as noticed in earlier works
[27, 29, 31].

At x = 0.2, the hybridized band with Ni dz2 detaches
from EF. As a result, the FS at Γ disappears. Upon fur-
ther doping, at x = 0.5, another FS from the hybridized
band detaches from EF as well and the FS from Ni dx2−y2

is solely realized. Therefore, two distinct Lifshitz transi-

TABLE I. The low-energy carrier number, ne, as a function of
doping ratio. ne is defined by the volume of the Fermi surface.
3-dimensional Fermi surface computed with DFT+DMFT is
presented in Supplemental Material [56].

x = 0.0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

Ni dx2−y2 0.98 0.93 0.85 0.76 0.66 0.56

Hybridized
band

0.07 0.03 0.02 0.01 ∼0.00 0.00
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FIG. 4. Electronic structures of La1−xSrxNiO2 computed within DFT+DMFT at T = 116 K. (a) k-resolved spectral functions.
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tions are realized upon doping [27, 42].

Results: Two-Band Model— The multiorbital charac-
ter is definitely seen in the DMFT valence histogram as
depicted in Fig. 4(c), where the second largest probability
of 0.16 comes from the atomic configuration of (N = 8, eg
S = 1) with a spin-triplet state within Ni eg states [82].
Note that (N = 9, S = 1/2) with one hole in Ni dx2−y2

has the largest probability of 0.35. These two largest
probabilities are nearly constant over the doping con-
centration. Since the FS has primarily Ni dx2−y2 , one
could interpret in a one-band scenario as a low-energy
model [21, 24]. However we find that Hund’s coupling
JH decreases Z and increases −ImΣ(i0+) for dx2−y2 (see
Fig. S14 in SM [56]), which is surprising as the atomic
ground state configuration has one hole. This JH de-
pendence of the correlation strength is the hallmark of a
Hund’s metal [68, 83, 84]. This is because a metallic state
requires fluctuations between d9 and d8, and JH is im-
portant in the latter configuration as seen clearly in the
valence histogram in Fig. 4(c). We can think of the crys-
tal field as being frequency dependent, at low energies it
leaves dx2−y2 as the most active orbital, but at interme-
diate frequencies both dx2−y2 and dz2 are important (see
Section XIV and Fig. S17 in SM [56]). Therefore, the
infinite-layer nickelate is a Hund’s metal where Hund’s
correlation is hidden at low energies but noticeable at in-
termediate energies. It is different from the Hund’s metal

realized in iron pnictides, chalcogenides, and ruthenates,
where a configuration with more than one electron or
hole, makes Hund’s correlation prominent in the atomic
ground state configuration. This is made explicit by a
two-band Wannier construction which is atom centered
with the symmetry of the two Ni eg orbitals, but which
exhibits the clear difference of dx2−y2 and dz2 provided
in SM (see Section XIII and Fig. S16 in SM [56]) which is
different from alternative low-energy Wannier construc-
tions reported before [14, 17, 34–36, 43, 44]. This per-
spective provides a qualitative understanding of the vari-
ation of the Hall coefficient with doping and temperature
which is seen in the experiments [1, 4, 5] as discussed in
SM [56].

Conclusion— To summarize, we have computed
the basic electronic structure of the normal state of
La1−xSrxNiO2 within DFT+DMFT with a focus on the
temperature and doping dependence of the optical con-
ductivity. We find signs of strong correlations in the opti-
cal response as the ratio of the optical spectral weight to
the DFT band theory (i.e. KDMFT/KDFT) is small (this
can be a feature of Mott or Hund’s systems). We find
that the evolutions of the optical spectral weight with
(i) temperature and (ii) doping are qualitatively differ-
ent from those in a canonical Mott-Hubbard system and
more similar to those of an orbitally differentiated Hund’s
metal with a highly correlated dx2−y2 and a dz2 orbital
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with weaker correlations. To reveal the basic physics that
govern these materials we studied the dependence of the
physical quantities on the interaction parameters. We
find (1) DMFT valence histogram with enhanced high
spin occupation and (2) strong dependence of the coher-
ence scale with Hund’s coupling JH , both are clear signa-
tures of the Hund’s metal. This type of material is quite
unique since Hund’s physics is hidden at low energies
due to the large crystal field splitting but noticeable at
intermediate energies where the (dynamical) crystal field
splitting becomes small and Hund’s coupling dominates.
It is in an intermediate position between the multior-
bital iron based superconductors and one-band high-Tc
cuprate superconductors, thus opening a new research
area in the theory of correlated materials.
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