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Signatures of self-organized criticality (SOC) have recently been observed in an ultracold atomic gas under
continuous laser excitation to strongly-interacting Rydberg states [S. Helmrich et al., Nature, 577, 481– 486
(2020)]. This creates unique possibilities to study this intriguing dynamical phenomenon under controlled
experimental conditions. Here we theoretically and experimentally examine the self-organizing dynamics of
a driven ultracold gas and identify an unanticipated feedback mechanism originating from the interaction of
the system with a thermal reservoir. Transport of particles from the flanks of the cloud toward the center
compensates avalanche-induced atom loss. This mechanism sustains an extended critical region in the trap
center for timescales much longer than the initial self-organization dynamics. The characteristic flat-top density
profile provides an additional experimental signature for SOC while simultaneously enabling studies of SOC
under almost homogeneous conditions. We present a hydrodynamic description for the reorganization of the
atom density, which very accurately describes the experimentally observed features on intermediate and long
timescales, and which is applicable to both collisional hydrodynamic and chaotic ballistic regimes.

Introduction.– Many-body systems, may they be driven,
open or excited by a sudden parameter quench, often evolve
toward steady or transient metastable states which can be
classified as far from thermal equilibrium [1–13]. Some-
times these systems feature attractors for the non-equilibrium
dynamics that give rise to emergent scale invariant proper-
ties over a wide range of initial states or parameters [14–
18]. One paradigmatic example is self-organized criticality
(SOC), whereby a dissipative many-body system evolves to-
ward a (non-equilibrium) critical state by an intrinsic feed-
back mechanism. Since its first introduction by Bak, Tang,
and Wiesenfeld in 1987 [12, 19], SOC has been intensively
studied theoretically and associated with phenomena ranging
from avalanches and earthquakes to solar flares and neuronal
activity [20–24].

The range of phenomena found to exhibit SOC-like charac-
teristics is at odds however with the relatively stringent condi-
tions expected to lead to SOC [25]. For example, the typical
requirements of a large separation of timescales between slow
dissipation and fast, conservative bulk dynamics will never be
perfectly satisfied in practice [26]. This has lead to the notion
of self-organized quasi-criticality (SOqC) where the system
hovers around criticality with large excursions into the sub-
and super-critical phases [26, 27]. Nonetheless, key signa-
tures of SOC including scale invariance of the stationary den-
sity and power-law distributed excitation avalanches were re-
cently observed in the driven-dissipative dynamics of atomic
Rydberg gases [28] (see also related experiments in driven
thermal gases [29]). These works, however, did not pinpoint
an integral mechanism which brings the system out of the sub-
critical absorbing phase. This therefore raises important ques-
tions about how signatures of the SOC state persist for long
times and whether it bears universal characteristics [25] that
can be extracted from experiments in a transient regime.
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Figure 1. Mechanisms for self-organized criticality in an ultracold
atomic gas. (a) A trapped atomic gas with inhomogeneous density
distribution is continuously driven by an off-resonant excitation laser
to highly excited Rydberg states (blue disks). (b) Trajectory of the
atom density nt and the excitation density ρt driven by facilitated
excitation, decay and hydrodynamic motion. Starting from the su-
percritical phase nt=0 > nc the system undergoes: (i) rapid growth
of Rydberg density; (ii-a) self-organization from the active phase to-
ward the critical point via gradual depletion of particles (caused by
loss from the Rydberg state); (ii-b) refilling of the central density
from the sub-critical phase by atomic rearrangement (thermal mo-
tion) from the wings to the trap center; (iii) stabilization close to the
critical point for an extended period of time. (c) Upper panels: exem-
plary experimental absorption images (n~x,t integrated over z) at dif-
ferent times. Lower panels: Reconstructed three-dimensional atom
density n~x,t at y = z = 0 showing a flat-top profile at the SOC critical
density starting around 5 ms and persisting until much later times.
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Here we experimentally and theoretically demonstrate that
the mechanisms leading to the SOC state are remarkably ro-
bust. We show that slow thermal motion of the particles pro-
vides an additional feedback mechanism which stabilizes the
system close to the critical state over an extensive time pe-
riod. This is evidenced by the experimental observation of a
stable flat-top profile in the atomic gas, where the wings of
the distribution act as particle reservoirs that compensate par-
ticle loss in the trap center (Fig. 1). To explain this result we
develop a hydrodynamic Langevin equation which includes
the competition between thermalization of the gas (in the mo-
tional degrees of freedom) and the driven-dissipative excita-
tion dynamics leading to SOC. The thermal motion of each
atom in the trapping potential yields an effective evolution for
the atom density, cred which we describe in the overdamped
regime, giving rise to drift and diffusion terms. Although the
experiment is not in a collisional regime, this approach cap-
tures the collective evolution towards a thermal distribution
extremely well. It is reminiscent of the hydrodynamics of a
gas in classical statistical mechanics and gives rise to density
currents. This allows the cloud to adapt by slowly refilling
sub-critical regions back to a critical state, similar to plastic-
ity in biological neural networks [30, 31].

Self-organization mechanism.– We consider a spatially
inhomogeneous gas of ultracold atoms held in an approxi-
mately harmonic optical potential produced by a focused far-
off-resonant laser beam [28] (depicted in Fig. 1a). The atoms
are continuously driven by a detuned laser field, which creates
rare and isolated Rydberg excitations at random positions in
the gas. Once an excitation is present it either spontaneously
decays (typically accompanied by loss from the trap [28]), or
triggers secondary excitations through a process called Ryd-
berg facilitation [32–35]. This occurs at a characteristic dis-
tance rfac ≈ 4.5 µm (for the present experiments) where the
laser detuning is compensated by the van der Waals interac-
tion between Rydberg pair states [36]. The self-organizing
dynamics are driven by the competition between facilitated
excitation (with a rate proportional to κn~x,t, where κ is the mi-
croscopic facilitation rate per unit volume and n~x,t is the total
atom density) and decay of excitations with a density inde-
pendent, overall decay rate per excited atom Γ. These two
processes compete to produce complex dynamics [28, 37–40]
which drives the system to a critical atom density nc ≈ Γ/κ.
For n~x,t > nc (supercritical or active phase) individual excita-
tions can grow into spatially extended clusters of excitations
(avalanches) with a high degree of activity and particle loss.
For n~x,t < nc (absorbing phase), these excitation avalanches
are rare or vanishingly small.

Figure 1 illustrates the mechanisms leading to SOC. Start-
ing from the supercritical regions of the cloud the density of
excitations ρ~x,t undergoes a period of rapid growth [labeled (i)
in Fig. 1b] (κn~x,t > Γ). Roughly after one millisecond (≈ 1/Γ),
this is followed by a slow, visible decrease in both n~x,t and ρ~x,t
owing to a gradual loss of excited atoms [labeled (ii-a)]. In
the limit of vanishingly small effective loss rate (perfect sep-
aration of timescales) the system will follow a characteristic
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Figure 2. Theory-experiment comparison showing the approach to
the SOC state (top: experiment, bottom: theory). (a) Instantaneous
number of Rydberg excitations integrated over the cloud (∝ ρt). Each
data point is obtained from a destructive measurement and corre-
sponds to a distinct experimental realization. Several small but statis-
tically significant avalanches are observed for t > 50 ms. Inset: cor-
responding total atom number. (b) One-dimensional slices through
the atomic density distribution n~x,t at y = z = 0. (c) Simulated dy-
namics of the full time-evolution (red line: single trajectory, grey
lines: overlapped data of six different trajectories) showing tempo-
rally well separated, extensive excitation avalanches that persist long
after the initial growth and self-organizing regimes (i) and (ii). (in-
sets: snapshots of the peak excitation density per avalanche at z = 0).
(d) Slices through the simulated density profiles at y = z = 0 showing
the formation of a flat-top density profile pinned at n~x,t = nc analo-
gous to the experimental observations in (b) (see also inset).

trajectory (dashed blue curve in Fig. 1b) that terminates at the
critical point [orange cross at n~x,t = nc and ρ~x,t = 0]. If instead
the excitation avalanches persist on timescales comparable to
the time for self-organization, the dynamics may overshoot
the critical point, terminating in the absorbing phase (dotted
grey curve in Fig. 1b). This is associated with the appearance
of a temporary dip in the atomic density distribution (grey
curve in Fig. 1a). However, slow motion of particles in the
trap refills this density dip, providing a mechanism to escape
the absorbing phase and approach the critical point [red curve
in Fig. 1a, labeled (ii-b)]. This interplay of nonlinear exci-
tation dynamics and atomic motion explains how the system
self-organizes close to the critical point with a constant crit-
ical density across the cloud and sustains critical dynamics
(e.g. avalanches) for long times compared to the initial self-
organization period [labeled (iii)].

Experimental approach.– Our experiments start with an ul-
tracold gas of N = 105 potassium-39 atoms trapped in a cigar-
shaped optical potential with trap frequencies ωx/2π = 65 Hz
and ωy,z/2π = 950 Hz. The atomic cloud has a temperature
T = 40 µK and e−1/2 radii σx = 210 µm, σy,z = 12 µm with
a peak density n0 = 0.21 µm−3. At time t = 0, we switch
on an off-resonant ultraviolet (UV) laser coupling with Rabi
frequency Ω ≈ 200kHz and detuning ∆/2π = 30 MHz on the
transition from the ground state |g〉 = |4s1/2, F = 1〉 to the Ry-
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dberg state |r〉 = |66p3/2〉. To strongly suppress single-particle
excitations and ensure that many-body effects dominate, we
stay in the regime Γ � Ω � ∆ [37, 41–52]. Excitations
decay with a calculated rate Γ/2π = 0.84 kHz, which either
brings them back to the ground state |g〉 or into states |0〉which
are decoupled or lost from the trap. This irreversible loss of
particles |r〉 → |0〉 provides the first crucial self-organization
mechanism [28]. After laser exposure time t, we measure the
number of Rydberg excitations in the cloud as well as the spa-
tial distribution of ground state atoms remaining in the trap.
For the former we field-ionize the Rydberg atoms and detect
them on a micro-channel plate detector. For the latter we take
an absorption image of the atom cloud, which integrates along
the propagation of the light field [28].

Example absorption images after different exposure times t
are shown at the top of Fig. 1c, roughly coinciding with those
sketched in Fig. 1a. The line profiles in Fig. 1c are recon-
structed cross-sections of the three-dimensional density distri-
bution through the center of the cloud. They are obtained by
an inverse Abel transformation of the average over several ab-
sorption images. Initially the gas has an approximately Gaus-
sian shape as expected for an optically trapped thermal gas. At
t = 5 ms, a dip in the center where the density was initially the
highest has developed. For even longer times t ' 15 ms, this
dip has filled in to give a flat-top coinciding with the critical
density nc.

Theoretical description.– The collective dynamics of the
driven Rydberg ensemble can be described by a nonequilib-
rium field theory for the local density of particles n~x,t and the
density of excitations ρ~x,t [28]. Besides dissipative decay and
facilitated spreading of excitations, we also account for hy-
drodynamic motion of the atoms via two coupled stochastic
evolution equations for ρ~x,t, n~x,t, including the internal and ex-
ternal degrees of freedom.

We label each atom with an index j, a set of operators
σ
αβ
j = |α〉 〈β| j where α, β label the states 0, g, r, and a (classi-

cal) position ~xl. The equation of motion (EOM) for the inter-
nal degrees of freedom is given by the microscopic Liouvillian

∂tσ
αβ
l = i

(∑
j,l

C6σ
rr
j

|~xl − ~x j|
6 − ∆

)
σrr

l + Ω
σ

rg
l + σ

gr
l

2
, σ

αβ
l


+ δαβ

(
δαrγde + δαgγ↓g + δα0γ↓0

)
σααl −

Γ

2
{σrr

l , σ
αβ
l },

with the anti-commutator {·, ·}, commutator [·, ·] and Kro-
necker symbol δα,β. This includes coherent single-particle
processes: laser driving with Rabi frequency Ω and detun-
ing ∆, and an (effectively) isotropic van der Waals interaction
between atoms l and j if both are in the Rydberg state (as-
suming an average over Rydberg pair state potentials [53]).
Dissipative single-particle processes are quantified by the de-
phasing rate γde, the spontaneous decay rate γ↓g for the pro-
cess |r〉 → |g〉 (γ↓0 for |r〉 → |0〉) and Γ = γde + γ↓g + γ↓0,
where Γ � γ↓,0 [28].

Defining a spherical unit cell with radius rfac and
volume Vfac, the coarse-grained densities are [28]

ρ~x,t =
∑′

j,~x〈σ
rr
j 〉/Vfac, n~x,t =

∑′
j,~x〈σ

rr
j + σ

gg
j 〉/Vfac where∑′

j,~x is restricted to j with |~x j − ~x| ≤ rfac. The EOM for the
atomic density is evaluated by applying the chain rule

∂tn~x,t =

′∑
j,~x

∂t〈σ
rr
j + σ

gg
j 〉

Vfac
− ∇

′∑
j,~x

〈σrr
j + σ

gg
j 〉

Vfac
∂t~xl, (1)

where ∇ = (∂x, ∂y, ∂z). It contains the EOM for the internal
degrees of freedom and for the position of the atoms. The
sum over the velocities in Eq. (1) is by definition the coarse
grained current ~j.

An equivalent computation for ∂t~ρ~x,t yields the Langevin
equation [40, 54]

∂tρ~x,t = (D∇2 − Γ)ρ~x,t + (τ + κρ~x,t)
(
n~x,t − 2ρ~x,t

)
+ ξ~x,t. (2)

Evolution within each unit cell consists of facilitated (de-
)excitation with an estimated rate κρ~x,t ≈

Ω2Vfac
2∆

ρ~x,t [28, 54]
and dissipative decay ∼ Γ. Excitations spread diffusively be-
tween unit cells with Drfac ≈ κ. Rare, off-resonant single-
particle excitations occur with rate τr3

fac = κΓ
∆
≈ 10−4κ, act-

ing as local seeds to prevent the system from getting stuck in
an absorbing state. Local fluctuations in the excitation den-
sity are described by a multiplicative Markovian noise ξ(~x, t)
with auto-correlation function 〈ξ(~x, t)ξ(~y, t′)〉 = δ(~x − ~y)δ(t −
t′)

(
Γρ~x,t + τ

)
[54].

The EOM of the density n~x,t yields

∂tn~x,t = −∇~j~x,t − γ↓0ρ~x,t, (3)

where we use the current ~j~x,t = −(DT∇ + η∇V~x)n~x,t, which
is obtained from a hydrodynamic (coarse-grained) descrip-
tion of a classical thermal gas [55]. The evolution is com-
posed of diffusion (∝ DT ) and drift due to the external force
−∇V~x. The force originates from the harmonic trapping poten-
tial V~x = M

2
∑

l=x,y,z(ωl~xl)2, for which we use the frequencies
ωl and atomic mass M from the experiment. This statisti-
cal treatment of the atom motion is motivated by (i) the short
thermal deBroglie wavelength λth = h/

√
2πMkBT ≈ 30 nm

compared to the trap size (10− 100 µm) and (ii) an effectively
collisionless motion due to the low density and small scatter-
ing cross-section for the gas.

In the limit γ↓0 → 0, the steady state has zero current
~j~x,t = 0 and follows the Gaussian equilibrium distribution
n~x,t = n(eq)

~x = n0 exp(− V~x
kBT ). For the numerical simulation

we use the temperature T measured in the experiment, such
that the initial spatial extension of the cloud is σl =

√
kBT
Mω2

l
,

i.e., σy,z = 2.5rfac and σx = 44rfac. For γ↓0 > 0 the cur-
rent counteracts the loss and pulls density towards the center
of the cloud, trying to rethermalize to a Gaussian distribution
with a typical rate ηMω2

x. In the EOM for ρ~x,t, particle motion
is negligible compared to the facilitated spreading of excita-
tions, i.e., ∼ Dr−2

fac � ηMω2
x.

The mobility η is related to the diffusion constant DT =

ηkBT via the Einstein relation and the product ηM corresponds
to the timescale over which the gas thermalizes in the absence



4

of the driving laser. Because the gas is in the collisionless
regime, the effective value of η is determined primarily by the
anharmonicity of the trapping potential. A comparison with
the experimental thermalization time yields ∼ 1/(ηMω2

x) =

7 ms. This respects the separation of timescales between the
fast spreading of excitations ∼ r2

fac/D = 0.1 ms and a ther-
malization time of ≈ 2 (29) oscillation periods in the x (y-z)
direction.

The Langevin equations are integrated numerically on a
3+1-dimensional lattice via an operator splitting scheme [55–
57]. In the simulations we use parameters matching the ex-
perimentally observed facilitation and decay rates [28, 58].

Dynamics.– Figure 2 shows comparable experiments and
numerical simulations for an initially Gaussian atomic cloud
with peak density n > nc. Examining both compo-
nents n~x,t, ρ~x,t provides insights into the different dynami-
cal regimes. An initial growth regime (i), covering the first
few milliseconds of evolution, results in a macroscopic Ryd-
berg population. The early time growth dynamics are inter-
esting in their own right [59], but are not overly important
for the self-organizing behavior on longer timescales. Sub-
sequent loss from the Rydberg state begins to decrease the
total atom number, leading to a self-organizing regime (ii),
evidenced by large bursts of Rydberg excitations (large activ-
ity seen in Fig. 2a,c) and a sudden drop in the central density
of the atomic cloud. The density approaches a flat-top dis-
tribution with critical central density n~x,t ≈ nc. This marks
the onset of the self-organized critical regime (iii), charac-
terized by a nearly flat central density n~x,t = nc (red curves
in Fig. 2b,d, imaging noise is enhanced by the inverse Abel
transform causing the appearance of additional structure in
Fig. 2b) and sporadic avalanche-like excitation events. This
is reached after approximately 15 ms in the experiment and
persists until at least 150 ms. Simulations show that subse-
quent avalanches are well separated in space and time, imply-
ing that experimentally observed Rydberg excitation spikes
correspond to individual avalanche events (Fig. 2c).

We identify the state reached under these experimental con-
ditions as SOC because it self-organizes to a critical den-
sity profile n~x,t = nc. Close to the critical density, the sys-
tem is known to yield power-law statistics for excitation out-
bursts [7, 57], demonstrated for the same setup in Ref. [28].
In this regime each avalanche transiently imprints a slight de-
pression in the density profile such that n~x,t < nc. However,
particle transport from the flanks re-establishes n~x,t ≈ nc be-
tween successive avalanches (Fig. 2), thus sustaining a close
to ideal critical SOC state over a large region of the system.

To quantify the characteristic timescale for this mechanism,
we investigate the effective refilling rate of the central region
λ. A necessary condition for maintaining a SOC state is to sat-
isfy a common separation of timescales γ↓0 � λ � τ [23, 57].
The refilling rate is determined by the gradient of the parti-
cle current λn~x,t ≡ −∇~j~x,t from the wings towards the cen-
ter. To estimate λ, we apply a mean-field approach based
on our observation that the current is dominated by parti-
cle flow along the elongated x-direction. Therefore, we as-

sume a quasi-one-dimensional cloud with a flat-top of length
Lx and a constant central density nx,t = n̄t ≥ nc. Outside,
the density is sub-critical and follows the equilibrium profile
nx,t = n̄t

(
n(eq)

x /n(eq)
Lx/2

)
, which minimizes the current ~jx,t = 0 in

the absence of excitations (ρx,t = 0). Averaging the current
induced particle gain over the center yields

n̄tλ = −
1
Lx

∫
|x|≤Lx/2

dx ∂x jx,t = ηMω2
xn̄t. (4)

Using Eq. (4), we estimate γ↓0/λ ≈ 50 and λ/τ ≈ 100 from
experimental parameters (and comparable for the theory [58]).
This indeed ensures that individual avalanches experience a
nearly constant central density over their lifetime. It also en-
sures that the refilling of the central density happens much
faster than off-resonant excitations (∼ 1/τ), leading to well-
separated avalanches, fulfilling the necessary conditions for
SOC [23].

Finally, we analyze the late time dynamics, characterized
by a slow melting of the flat-top, resulting in the reestablish-
ment of a Gaussian density profile, and the absence of exci-
tation avalanches. We identify the state fulfilling both con-
ditions simultaneously as thermal equilibrium. This occurs
when the particle reservoirs represented by the flanks are con-
tinuously depleted, leading to a gradual shrinking of the flat-
top region (Fig. 3a,b). This can be seen by the evolution of
the excess kurtosis EKt, shown in Fig. 3c. A non-zero kur-
tosis serves as a measure for the deviation of the cloud shape
from a thermal Gaussian distribution, i.e., it measures the rel-
ative flatness of the distribution. Its relaxation monitors the
melting of the flat-top towards a robust, thermal equilibrium
state without excitation outbursts (corresponding to EKt = 0).
Figure 3c shows that the timescale on which a Gaussian distri-
bution is restored exceeds 200 ms. Consequently we infer the
lifetime of the SOC state to be at least 10 times longer than
the timescale associated with self-organization (≈ 20 ms).

Conclusion.– We have identified an important additional
mechanism which explains how SOC can be sustained in a
driven-dissipative ultracold atomic gas by nonequilibrium cur-
rents. We show that this generates a flat-top density distri-
bution at the SOC critical density, quantitatively confirmed
by the hydrodynamic Langevin theory. This demonstrates a
novel signature for SOC that could help identify SOC-like
behavior in other systems, such as room-temperature atomic
vapors and cold molecular plasmas [29, 60]. Similar mecha-
nisms may also be at play in very different systems including
adaptive neural networks [30, 31]. The fact that the system
naturally evolves to a stable, mostly homogeneous shape com-
bined with the effectiveness of the hydrodynamic Langevin
theory will enable more stringent tests of non-equilibrium uni-
versality in SOC systems. Alternatively, the interplay between
internal and external degrees of freedom could lead to other
rich dynamical regimes to test, such as oscillatory behavior
associated with SOqC [26, 27, 61].
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Figure 3. Melting of the flat-top from the time-evolved density
profile n~x,t (projected onto the x-axis). (a) Experimental measure-
ments at different times and (b) the simulated evolution show a sta-
ble flat-top with a lifetime exceeding 200 ms and a boundary (white
dashed curve), which slowly approaches the center. Both plots ex-
tend over the same x-axis distance. (c) Equilibration of the cloud
profile is quantified by its time-dependent excess kurtosis EKt =∫

dx(x/σx)4n~x,t − 3, where we integrate over a density slice with
y = z = 0. Here σx is the width of the cloud in the x-direction. Start-
ing from a Gaussian shape (EK = 0), the kurtosis drops to EK ≈ −1
after the initial avalanche. It recovers when the cloud evolves back
towards an asymptotic thermal, Gaussian state.
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