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We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment.
We prove that in the presence of noise causing false excitation, such as thermal noise, quantum
Fisher information (QFI) of arbitrary quantum states for the separation of the objects, which quan-
tifies the resolution, always converges to zero as the separation goes to zero. It contrasts with a
noiseless case where it has been shown to be non-zero for a small distance in various circumstances,
revealing the superresolution. In addition, we show that false excitation on an arbitrary measure-
ment, such as dark counts, also makes the classical Fisher information (CFI) of the measurement
approach to zero as the separation goes to zero. Finally, a practically relevant situation, resolving
two identical thermal sources, is quantitatively investigated by using QFI and CFI of finite spatial
mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy
system.

Rayleigh criterion poses a limit of resolution of two
incoherent objects in classical optics [1, 2]. Recently, in-
spired by quantum optics and quantum metrology, super-
resolution overcoming the Rayleigh limit has been pro-
posed by replacing a conventional direct imaging tech-
nique with structured measurement techniques in a weak
source regime [3]. Since the breakthrough, the superreso-
lution technique has been generalized for two incoherent
thermal sources [4], arbitrary quantum states of two ob-
jects [5], two-dimensional imaging [6], three-dimensional
imaging [7, 8], estimating spatial deformation [9], and
an arbitrary number of sources [10–13], and it has been
also studied from the perspective of channel discrimi-
nation [14, 15]. Also, many proof-of-principle experi-
ments have demonstrated that elaborately constructed
measurements enable surpassing the Rayleigh limit in
practice [16–20]. The main idea of revealing superres-
olution is to show that the quantum Fisher information
(QFI) of two objects’ separation, the inverse of which
limits the estimation error of the separation, is still non-
zero when the separation converges to zero. This behav-
ior contrasts with a conventional direct imaging method
whose classical Fisher information (CFI) vanishes as the
separation drops to zero, making the estimation error of
the separation diverge for a small separation.

More recently, the effects of noise on superresolution
techniques start to be analyzed. The CFI of two point
sources’ separation using a spatial mode demultiplexing
scheme has been shown to vanish in the presence of dark
counts [21] or measurement crosstalk [22] when the sep-
aration is small. However, these analyses are restricted
to specific measurement schemes. Meanwhile, the QFI
of resolving two incoherent thermal point sources also
vanishes for small separations in the presence of thermal
background noise [23]. In this case, the influence of detec-
tion noise is not systematically analyzed. Besides, pre-
vious studies are limited to uncorrelated classical states
such as thermal states and weak point sources. More gen-

eral quantum states need to be analyzed for applications
on microscopy where we can manipulate quantum states
of light emitted from sources to improve resolution.
In this Letter, we consider a more general situation

of resolving two identical sources in arbitrary quantum
states, assuming a generic noise model inevitable in ex-
periments, which we call excitation noise. Excitation
noise is a type of noise causing false excitation that can-
not be distinguished from signal photons, which includes
thermal background noise and dark counts. We first
prove that excitation noise makes QFI to vanish for small
separations, which indicates that the resolution of two
close sources is inherently vulnerable to noise in practical
imaging processes. We also provide a quantitative anal-
ysis of noise in resolving two identical incoherent ther-
mal sources. We then show that the CFI of arbitrary
measurement affected by excitation noise on detectors
vanishes for small separations. Notably, our results re-
produce previous studies about the impact of noises on
particular imaging processes and states [21–23]. Finally,
we show that in the presence of thermal noise, a finite
spatial mode demultiplexing (fin-SPADE) measurement
is nearly optimal when a signal-to-noise ratio (SNR) is
large.
The model.— Consider two identical sources with a

separation s > 0 that emit light described by two orthog-
onal creation operators ĉ†1,2. The emitted light reaches
to the image plane with being attenuated such that
ĉ†1,2 → √

ηâ†1,2 − √
1− ηû†1,2 with environmental modes

û†1,2 and being distorted as

â†1 ≡
∫ ∞

−∞

dxψ(x − s/2)â†x, â†2 ≡
∫ ∞

−∞

dxψ(x+ s/2)â†x.

(1)

Here, ψ(x) represents the point-spread function (PSF)
of the imaging system, assumed to be real for simplicity.
Also, the mode operators for different positions satisfy
the canonical commutation relation (CCR) [âx, â

†
x′ ] =



2

δ(x−x′). In general, the two mode operators do not obey
the CCR since the two PSFs ψ(x± s/2) have a non-zero

overlap, i.e., [â1, â
†
2] 6= 0. Thus, we define symmetric and

antisymmetric modes â± to orthogonalize them [3–5, 7],

â± ≡ â1 ± â2
√

2(1± δ)
, δ(s) ≡

∫ ∞

−∞

dxψ(x + s/2)ψ(x− s/2),

(2)

which satisfy the CCR, i.e., [â+, â−] = 0. Now, the over-
all dynamics can be captured as

ĉ†± ≡ ĉ†1 ± ĉ†2√
2

→ √
η±â

†
± −

√

1− η±û
†
±, (3)

where η± ≡ (1±δ)η represent effective attenuation rates,
and û± represent auxiliary modes. Furthermore, the
imaging process of estimating the separation s can be
described by the following dynamics of the mode opera-
tors [5, 24],

dâ±
ds

= i[Ĥeff
± , â±], (4)

where the effective Hamiltonians are written as

Ĥeff
± = i

dθ±
ds

(ĉ†±v̂± − ĉ±v̂
†
±)− iB±(â±b̂

†
± − â†±b̂±), (5)

where v̂± are the environmental mode operators before
the transformation, θ± ≡ arccos

√
η±,

b̂± ≡ 1

B±

∂â±
∂s

, and B± ≡ − ǫ±

2
√
1± δ

. (6)

Thus, mode operators b̂± represent the derivative of the
spatial modes, â±(s+ds) ≈ â±(s)+∂sâ±(s)ds. We have
also defined the following parameters:

ǫ2± ≡ ∆k2 ∓ β − γ2

1± δ
, γ ≡ δ′(s), ∆k2 ≡ β(0), (7)

β(s) ≡ −δ′′(s) =
∫ ∞

−∞

dx
dψ(x + s/2)

dx

dψ(x − s/2)

dx
. (8)

Here, γ represents the variation of the overlap from the
changes of the separation s, ∆k2 accounts for the vari-
ance of the momentum operator −i∂x, and β represents
interference between the derivatives of the PSFs. The
effective Hamiltonians show that when the separation s
changes, the attenuation to the environment û± varies
as well as the derivative modes b̂± are excited through
the beam-splitter-like Hamiltonian, which is the last term
in Eq. (5). Note that the model assumes that the light
evolves under a passive transformation before reaching to
the image plane and that since we use the Heisenberg pic-
ture, the emitted light from sources can be an arbitrary
quantum state.
QFI in a noisy system.— From the perspective of

quantum metrology, resolution can be quantified by the

QFI of the separation s [3]. QFI H(θ) of a quantum state
ρ̂(θ) for an unknown parameter θ gives a lower bound of
the estimation error for θ, ∆2θ ≥ 1/MH(θ), which is the
so-called quantum Cramér-Rao inequality [25–28]. Here,
M is the number of independent trials. Note that the
quantum Cramér-Rao inequality indicates that estima-
tion error diverges if QFI vanishes.
Before we present our main result, we define excitation

noise as a type of noise that transforms any quantum
state to be a full-rank state. Physical interpretation of
the noise is that it introduces false excitation indistin-
guishable from the signal. Thermal background noise is
such noise, which is described by a beam-splitter inter-
action with an environmental mode in a thermal state of
a non-zero photon number [29], because thermal back-
ground noise transforms a state into a full-rank state.
Now, we present our main result:

Proposition 1. For imaging processes in the presence
of excitation noise, the QFI for the separation s of two
identical sources in arbitrary quantum states converges
to zero as s→ 0.

Proof. Let ρ̂(s) be an arbitrary quantum state of light at
the image plane, emitted by two identical sources sep-
arated by s. First, because two objects are identical,
replacing s by −s does not change the description of the
system. Thus, we have dρ̂/ds ∝ sσ̂ with a Hermitian
operator σ̂ for small s ≪ 1, which is explicitly shown in
Ref. [24]. Meanwhile, since noise may occur any relevant
modes in the system, the quantum state ρ̂(s) is full-rank
after undergoing excitation noise.
Recall that QFI is written as H(s) = Tr[ρ̂(s)L̂(s)2],

where L̂ is symmetric logarithmic derivative (SLD) op-
erator satisfying the equation ∂sρ̂(s) = [ρ̂(s)L̂(s) +
L̂(s)ρ̂(s)]/2 [25–28]. Writing the quantum state in a spec-
tral decomposition form ρ̂(s) =

∑

i pi|ψi〉〈ψi| and using
dρ̂/ds ∝ sσ̂, the SLD operator can be written as [28]

L̂(s) = 2
∑

i,j:pi+pj>0

〈ψi|∂sρ̂(s)|ψj〉
pi + pj

|ψi〉〈ψj |

≈ 2s
∑

i,j:pi+pj>0

〈ψi|σ̂|ψj〉
pi + pj

|ψi〉〈ψj |+O(s2). (9)

By the definition of excitation noise, pi+pj > 0 for all i, j
and pi + pj does not converge to zero as s → 0; hence,

H(s) = Tr[ρ̂L̂2] ∝ s2 → 0 as s → 0 [30]. (A similar
argument has been used in the context of quantum spec-
troscopy [31].)

Note that although we assumed excitation noise for
simplicity, it is sufficient for a final state to be full-
rank only in the subspace of signal operator σ̂ to prove
the same result. The proposition can be intuitively ex-
plained by noting that the signal in the imaging system
approaches zero for s → 0, indicated by dρ̂/ds ∝ sσ̂,
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while the noise ratio remains finite. Therefore, the SNR
vanishes for small s, which leads to vanishing QFI. In
contrast, when the quantum state is not full-rank in the
support of σ̂ around s = 0, there exists pi > 0 and |ψi〉
such that pi → 0 as s→ 0 and a projection measurement
onto |ψi〉〈ψi| gives a non-zero QFI element. Therefore,
the QFI may not vanish for small s, which accounts for
non-zero QFI for noiseless cases [3–5].
Note that attenuation channels, where a vacuum state

occupies the environmental mode ê, do not introduce
false excitation but diminish the signal. Thus, the QFI
of s does not necessarily vanish as s → 0. We empha-
size that the proposition does not rule out the possibility
of superresolution overcoming the Rayleigh limit but im-
plies that when the objects are close and the system is
noisy, the QFI of the separation can be extremely small.
We supply an important example to analyze the effect of
noise in the following section.
Two identical thermal sources.— Consider two inco-

herent thermal sources with an unknown separation s.
When the modes â1, â2 are occupied by thermal states
of the mean photon number Ns, the symmetric and an-
tisymmetric modes â+ and â− can also be described by
thermal states of the mean photon number ηNs(1 + δ)
and ηNs(1 − δ), respectively [4, 5]. Introducing thermal
noise characterized by the same mean photon number Nn

onto the relevant modes â± and b̂±, the quantum state
is written as the product of the states of symmetric and
antisymmetric modes, ρ̂ = ρ̂+ ⊗ ρ̂−, where

ρ̂±(s) = ρ̂T(ηNs(1 ± δ(s)) +Nn)⊗ ρ̂T(Nn). (10)

Here, each mode corresponds to â±, b̂±, respectively, and
ρ̂T(N) represents a thermal state with the mean photon
number N .
Using the QFI formula of Gaussian states [32–38],

we obtained the QFI of the separation s [24], H(s) =
H+(s) +H−(s) with

H±(s) =
η2N2

s γ
2

(ηNs(1± δ) +Nn + 1)(ηNs(1± δ) +Nn)

− 2η2N2
s [(1± δ)(δ′′(0)∓ δ′′(s)) + γ2]

(2Nn + 1)(2ηNs(1± δ) + 2Nn + 1)− 1
. (11)

Here, H±(s) represent the QFI from symmetric and an-
tisymmetric modes, respectively. The first and second
term accounts for the changes of the mean photon num-
ber on mode â± from the change of effective attenuation
factors η± and the transformation of the spatial modes’
shape â±(s) into â±(s + ds) ≈ â±(s) + ds∂sâ±, respec-
tively.
The QFI recovers previous results when Nn = 0 in

Refs. [4, 5]. More importantly, the QFI vanishes as
s → 0 unless Nn = 0. Fig. 1 (a) and (b) compare the
QFI H(s) in the ideal and noisy cases with the Gaussian

PSF, ψ(x) = e−x2/4σ2

/(2πσ2)1/4. A remarkable differ-
ence between the two cases is that as s → 0, the QFI in

(a) (b)Nn = 0 Nn = 0.01

(c)
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FIG. 1. QFI with respect to s and Ns with (a) Nn = 0
(noiseless), (b) Nn = 0.01. In the noiseless case, the quantum
Fisher information does not decrease as s decreases. However,
even with a small amount of noise photons, the QFI drops
for small s. The dotted line in (b) shows local maxima of
QFI for fixed ηNs, Nn > 0, and SNR ≫ 1 as shown in (c).
(c) Normalized QFI when SNR ≫ 1 with respect to s with
ηNs = 104, 103, 102, 10, 1 from the left to the right and, Nn =
0.01. The horizontal line represents H(s∗) and the vertical
lines s∗ (see the main text). It captures the non-monotonic
behavior of QFI. (d) Normalized QFI when SNR ≪ 1 with
ηNs = 10−4, 10−3, 10−2, 10−1 from the bottom.

the noisy case rapidly drops whereas it does not change
in the ideal case. For example, when the separation s
is 0.01σ and the mean signal photons ηNs is 1, the QFI
H(s) is 0.5/σ2 and 6×10−4/σ2 for the noiseless case and
the noisy case with Nn = 0.01, respectively, which clearly
shows that even a small amount of noise can be critical
to the resolution.
Let us consider the regime where the SNR is large,

SNR ≡ ηNs/Nn ≫ 1. In this regime, Fig. 1 (c) shows
another interesting feature of QFI; it is not monotonic
with respect to s. For a small separation s ≪ σ in the
regime, the QFI for the Gaussian PSF can be approxi-
mated by

H(s) ≈ 4η2N2
s s

2

η2N2
s s

4 + 8ηNss2σ2 + 64Nn(Nn + 1)σ4
, (12)

which has the local maximum

H(s∗) ≈ ηNs

2σ2

√

N2
n +Nn

(Nn +
√

N2
n +Nn)(

√

N2
n +Nn +Nn + 1)

Nn≪1≈ ηNs

2σ2

1

1 + 2
√
Nn

(13)

at s∗ = 2
√
2(N2

n + Nn)
1/4σ/

√
ηNs, as shown in Fig. 1

(c). Here s∗ is a characteristic length scale, and if s≪ s∗,
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the QFI can be further approximated as

H(s) ≈ η2N2
s

Nn(Nn + 1)
∆k4s2 =

η2N2
s

Nn(Nn + 1)

s2

16σ4
(14)

Nn≪1≈ η2N2
s

Nn

s2

16σ4
if ηNs ≫ Nn and s≪ s∗.

One can observe that when SNR ≫ 1, Nn ≪ 1 and
s ≪ s∗, the QFI per a signal photon is proportional to
the SNR H(s)/ηNs ∝ ηNs/Nn, which is consistent with
the previous results [21, 23]. Also, the QFI decreases
quadratically as s→ 0.
On the other hand, when the SNR is small, i.e.,

ηNs/Nn ≪ 1, and the separation is small, s ≪
√
6σ,

the QFI is approximated by

H(s) ≈ η2N2
s

2Nn(Nn + 1)
[3∆k4 + δ(4)(0)]s2 (15)

=
η2N2

s

Nn(Nn + 1)

3s2

16
if ηNs ≪ Nn and s≪

√
6σ,

which is shown in Fig. 1 (d). Again, when Nn ≪ 1,
the QFI per a signal photon is proportional to the SNR,
H(s)/ηNs ∝ ηNs/Nn, and decreases quadratically as
s→ 0.
Finally, for a large separation s ≫ σ, the QFI can

be approximated as H(s) ≈ 2η2N2
s∆k

2/[2N2
n + ηNs +

2Nn(ηNs +1)], which shows that the noise decreases the
QFI for a large separation as well.
As a remark, we compare the QFI in Eq. (11) with the

one obtained in Ref. [23] where the same type of noise
was studied in the imaging process. The discrepancy
of the expression is present because the noise model of
Ref. [23] assumes that noise occurs only on the modes
â± whereas our noise model assumes the same amount
of noise on b̂± modes. Nevertheless, the previous result
has also revealed that the QFI vanishes as s→ 0 because
the rank of the quantum state does not change around
s = 0 in the first order of s even if we assume Nn = 0 for
b̂± modes.
Noisy detectors.— As pointed out in Ref. [23], analyz-

ing QFI might not be appropriate to consider the effect of
dark counts because QFI is a measurement-independent
quantity while dark counts are a feature of the measure-
ment device. To analyze the impact of dark counts, we
employ CFI F (θ) for an unknown parameter θ, the in-
verse of which gives a lower bound of estimation error for
a given measurement apparatus, ∆2θ ≥ 1/MF (θ) [39–
42]. By introducing the following proposition, we show
that excitation noise on detectors makes the CFI vanish.

Proposition 2. Consider a quantum state that satis-
fies ∂θρ̂ ≈ θσ̂ for small θ with a Hermitian operator
σ̂ and a positive-operator-valued-measurement (POVM)
{Π̂k}k∈K satisfying Π̂k ≥ 0,

∑

k∈K Π̂k = 1. Here, K
is an index set of measurement outcomes. If the sup-
port of the probability distribution pk = Tr[ρ̂(θ)Π̂k],

{k ∈ K|pk > 0}, does not change as θ → 0, the CFI
converges to zero as θ → 0.

Proof. Recall that the CFI of probability distribution
{pk} is given by [39–42]

F (θ) =
∑

pk>0

1

pk

(

∂pk
∂θ

)2

. (16)

The probability of obtaining outcome k by measuring a
quantum state ρ̂(θ) with POVM {Π̂k}k∈K and its deriva-
tive with respect to θ are given by

pk = Tr[Π̂kρ̂(θ)] and
∂pk
∂θ

≈ θTr[Π̂kσ̂]. (17)

Therefore, the CFI of small θ is written as

F (θ) =
∑

pk>0

1

pk

(

∂pk
∂θ

)2

≈ θ2
∑

pk>0

1

pk

(

Tr[Π̂kσ̂]
)2

.

(18)

Similar to QFI, CFI converges to zero as θ → 0 unless
there exists pk such that pk → 0 [30].

The proposition can be understood similarly to Propo-
sition 1. The proposition provides a necessary condition
to prevent the CFI of a measurement setting from van-
ishing for a small separation s. For example, dark counts
are a kind of excitation noise on detectors, causing false
excitations on all relevant detectors. Dark count rates
are generally non-zero in all relevant detectors in prac-
tice; thus, the support of the probability distribution does
not change, and it is natural to expect that the CFI of
separation s vanishes F (s) → 0 as s → 0 in experiment.
Moreover, the proposition can be applied to measurement
crosstalk, which may arise for fin-SPADE scheme [22]. It
makes all measurement outcomes mixed so that eventu-
ally the probability of obtaining each outcome becomes
non-zero. Also, the proposition shows the limitation of
direct imaging, homodyne detection, and heterodyne de-
tection [43] which always gives a non-zero probability of
each outcome for generic PSFs even in the noiseless case.
As a final remark, proposition 2 does not imply the fail-
ure of superresolution; it suggests that excitation noise
on detectors can pose a limit on the resolution as for QFI
in the previous section.
Finite spatial mode demultiplexing.— Finally, we ana-

lyze achievable resolution using the fin-SPADE measure-
ment. In the noiseless case, the fin-SPADE scheme em-
ploys a photon-counting for each Hermite-Gaussian mode
hq(x) on the image plane, which is optimal if an enough
number of Hermite-Gaussian modes are accessible in ex-
periment [3, 5]. In general, the analytical expression of
the CFI of the fin-SPADE scheme is difficult to obtain
due to the statistical correlations between different modes
of the measurement. We thus obtain the lower bound of
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F(s)/H(s) Nn = 0.01Fin-SPADE

FIG. 2. Relative CFI of fin-SPADE to QFI with respect to
different separation s and mean signal photon number ηNs.

the CFI using an inequality F (θ) ≥ ~̇µTC−1~̇µ, where ~µ
and C denote the mean and covariance matrix of the out-
come distribution, and ~̇µ ≡ ∂s~µ [44]. We provide more
details on the CFI and the numerical method in Ref. [24]
We consider a finite number of Hermite-Gaussian modes
hq with 0 ≤ q ≤ Q − 1 with Q = 15 in the presence of
thermal noise in the problem of resolving two incoherent
thermal sources. We confirmed that increasing Q larger
than 15 does not change the CFI for 10−3 ≤ s/σ ≤ 1.
Fig. 2 shows the ratio of the lower bound of the CFI of
fin-SPADE to the QFI [24]. It clearly shows that for a
large number of signal photons ηNs, the ratio converges
to the unity, which indicates that the fin-SPADE mea-
surement is optimal in that regime. Even when ηNs is
small, the lower bound of the CFI gives at least 65% of
the QFI. Hence, the fin-SPADE method’s performance is
not degraded significantly by thermal noise compared to
the QFI. A particular way to improve this further is to
directly measure the incoming photon numbers onto the
symmetric and antisymmetric modes and their derivative
modes {â±, b̂±} [24]. In general, the implementation of
such a measurement requires a prior information, which
might be overcome by using adaptive method [45].

Conclusions and discussion.— In this Letter, we have
investigated the effect of noise on the resolution of two
identical sources with an arbitrary state using quan-
tum and classical Fisher information and shown that the
Fisher information converges to zero if the system suffers
from false excitation noise such as thermal noise or dark
counts. We have shown that in the problem of resolving
two incoherent thermal sources with the number of signal
photons being larger than that of noise photons, a signal-
to-noise ratio poses a fundamental limit. Finally, we have
shown that the finite spatial demultiplexing measurement
is nearly optimal for a large signal-to-noise ratio.

Throughout the Letter, we are assuming that two ob-
jects are identical. Thus, the same conclusion might not
hold if the sources are not identical [46–49]. It would

be interesting to analyze the problem of resolving non-
identical sources.
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