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Motivated by conjectures in holography relating the entanglement of purification and reflected
entropy to the entanglement wedge cross-section, we introduce two related non-negative measures
of tripartite entanglement g and h. We prove structure theorems which show that states with
nonzero g or h have nontrivial tripartite entanglement. We then establish that in 1D these tripartite
entanglement measures are universal quantities that depend only on the emergent low-energy theory.
For a gapped system, we argue that either g 6= 0 and h = 0 or g = h = 0, depending on whether
the ground state has long-range order. For a critical system, we develop a numerical algorithm for
computing g and h from a lattice model. We compute g and h for various CFTs and show that h
depends only on the central charge whereas g depends on the whole operator content.

Quantum entanglement has come to play a key role
in our understanding of emergent phenomena in quan-
tum many-body physics and modern numerical methods.
Most attention has focused on bipartite entanglement,
e.g. properties of a pure state on two parties |ψ〉AB . The
entanglement entropy S(A) is the unique measure of bi-
partite entanglement because, up to reversible local oper-
ations and classical communication, the EPR pair is the
unique form of bipartite entanglement. In contrast, a
pure tripartite state |ψ〉ABC admits a large (presumably
infinite) number of distinct forms of entanglement, and
consequently a variety of tripartite entanglement mea-
sures have been proposed [1]. But it remains relatively
unexplored what universal features such measures might
reveal about a many-body system [2–9].

Recently two tripartite entanglement measures, the en-
tanglement of purification EP (A : B) [10] and the “re-
flected entropy SR(A : B) [11] have been applied to
many-body physics within the context of holographic du-
ality. As motivation, recall that the Ryu-Takayanagi
formula equates the bipartite entanglement entropy of
a boundary theory to the area of a minimal surface in
its holographic dual [12], a central result in the effort to
relate the emergence of spacetime geometry to quantum
entanglement. It is then natural ask whether there are
multi-partite entanglement measures which might also
have a dual geometric interpretation. In Refs. [13, 14]
it was conjectured that the minimal cross section of the
bulk “entanglement wedge joining two parties, EW (A :
B), is dual to the entanglement of purification in the
boundary, EP = EW . More recently, however, by de-
veloping a field-theoretic method for calculating SR in
generic conformal field theories (CFTs), it was shown
that SR = 2EW [11]. In general SR 6= 2EP , so one possi-
ble resolution is that their equality is a special property
of holographic CFTs which is violated at subleading or-
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FIG. 1. Left: A spin chain on a circle that is divided into three
parties A, B, and C. Right: Geometry in the computation of
EP (A : B). Region C is divided into CL and CR. The dashed
line represents the entanglement cut between ACL and BCR.

der in large-N expansion [15]. The gap between them,
2EP − SR, would then constitute an interesting entan-
glement measure of this violation. But investigating this
discrepancy requires a method for computing these quan-
tities in generic many-body systems.

In this work we derive a method for computing EP
and SR in 1D lattice models. To summarize our findings
it is convenient to define UV-regularized version of these
quantities [16], g(A : B) ≡ 2EP (A : B) − I(A : B) ≥ 0
and h(A : B) ≡ SR(A : B) − I(A : B) ≥ 0, where I
is the mutual information [17]. For the tripartition of a
ring shown in Fig. 1, holographic duality predicts that
they take on the universal value g = h = c

3 log(2), where
c is the central charge of the CFT [18]. But what about
in a generic lattice model? As a limiting case, we start
by proving structure theorems for states with g, h = 0
which imply that h = 0 if an only if a state is gapped
(c = 0), while g = 0 if and only if the system is gapped
and does not spontaneously break a symmetry. We then
develop a method for numerically computing g, h from a
lattice Hamiltonian on systems up to N ∼ 100 sites. As
expected, we find that h = c

3 log 2 is universal. However
we find that g ≥ h and depends on the operator content
of the CFT in addition c, yet is nevertheless completely
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universal. Thus 2EP −SR = g−h constitutes a new and
universal tripartite entanglement invariant of CFTs.
EP and SR — We first review the definitions of the

entanglement of purification EP (A : B) and reflected
entropy SR(A : B). Unlike the bipartite entanglement
entropy, which is a function of a reduced density matrix
on one party, these mixed state entanglement measures
are functions of the reduced density matrix on two par-
ties, ρAB , or equivalently its purification |ψ〉ABC , where
ρAB = TrC |ψ〉 〈ψ|.

The entanglement of purification EP (A : B) [10] is the
minimum of the entanglement entropy SACL

over all pu-
rifications |φ〉ABCLCR

of ρAB to another pair of systems
C = CLCR:

EP (A : B) ≡ min
|φ〉

SACL

(
|φ〉ABCLCR

)
. (1)

The partitions of the subsystems are depicted schemat-
ically in Fig. 1. In principle the auxiliary space CLCR
can be arbitrary, but the minimal SACL

can always be
achieved with dim(HCL

), dim(HCR
) ≤ rank(ρAB).[19]

We may alternatively rephrase Eq. (1) as a minimization
over unitary operations UC restricted to CLCR starting
from an arbitrary purification |φ0〉ABCLCR

of sufficiently
large dimension,

EP (A : B) = min
UCLCR

SACL

(
UC |φ0〉ABCLCR

)
, (2)

which is the viewpoint taken in our numerical approach.
EP is lower bounded by the mutual information [10],

EP (A : B) ≥ I(A : B)/2, so we define a non-negative
quantity

g(A : B) ≡ 2EP (A : B)− I(A : B) ≥ 0. (3)

The physical intuition behind this new quantity is that
the subtraction of the mutual information removes corre-
lations which are purely bipartite, as will be made more
precise by the structure theorems below.

To define the reflected entropy SR(A : B), we instead
pick a particular purification of ρAB known as the canon-
ical purification |√ρAB〉. It is defined as follows: we first
take the unique non-negative square root of the reduced
density matrix ρAB , and then regard the operator

√
ρAB

as a state |√ρAB〉 ∈ HA⊗HB⊗H∗A⊗H∗B . The reflected
entropy SR(A : B) is defined as

SR(A : B) ≡ SAA∗
(
|√ρAB〉

)
. (4)

It is shown in Ref. 11 that SR(A : B) ≥ I(A : B), so we
define the nonnegative quantity

h(A : B) ≡ SR(A : B)− I(A : B) ≥ 0. (5)

In order to interpret the nature of the tripartite entan-
glement captured by these quantities, we derive “struc-
ture theorems” for states which saturate these lower
bounds, i.e., states with g = 0 or h = 0.

States with g(A : B) = 0 — We first define a class of
pure tripartite wavefunctions known as triangle states.

Definition 1 (Triangle State). A state |ψ〉ABC is a tri-
angle state if for each local Hilbert space there exists a
bipartition Hα = HαL

⊗HαR
(α = A,B,C) such that

|ψ〉ABC = |ψ〉ARBL
|ψ〉BRCL

|ψ〉CRAL
, (6)

where |ψ〉αRβL
are pure states in HαR

⊗HβL
.

In other words, a triangle state can be obtained by
pair-wise distributing bipartite-entangled states followed
by local unitaries. In this sense, a triangle state lacks
nontrivial tripartite entanglement. We prove the follow-
ing theorem in the Supplemental Material (SM) [20, 21].

Theorem 2. A state |ψ〉ABC is a triangle state up to
local isometries if and only if g(A : B) = 0.

The “only if” direction can be shown by noting that
2EP (A : B) = I(A : B) in the purification |ψ〉ABC of
ρAB . The proof of the “if” direction is more complicated,
and is presented in SM [20].

Conversely, g(A : B) > 0 implies that |ψ〉ABC con-
tains tripartite entanglement that cannot be factorized
pairwise. For example, for a GHZ state |ψ〉ABC =√
d−1

∑d
j=1 |jAjBjC〉 the optimal purification of ρAB is

|ψ〉ABC itself [14], resulting in g(A : B) = log d. It can
also be shown that the W state has nonzero g(A : B).
This is in accordance with the fact the GHZ state and
W state are not triangle states [22].

States with h(A : B) = 0 — It can be verified that a
triangle state has h(A : B) = 0, so h(A : B) 6= 0 also
implies irreducible tripartite entanglement. But for the
GHZ state, g(A : B) 6= 0 while h(A : B) = 0, which
suggests that that some forms of tripartite entanglement
are “invisible” to h.

To make this precise we introduce the notion of sum
of triangle states.

Definition 3 (sum of triangle states (SOTS)). A pure
state |ψ〉ABC is a SOTS if for each local Hilbert space Hα
there exists a decomposition Hα =

⊕
j Hαj

L
⊗Hαj

R
such

that

|ψ〉ABC =
∑
j

√
pj |ψj〉Aj

RB
j
L
|ψj〉Bj

RC
j
L
|ψj〉Cj

RA
j
L
, (7)

where |ψj〉αj
Rβ

j
L

represents a pure state in Hαj
R
⊗ Hβj

L
,

etc, and
∑
j pj = 1.

For example, the GHZ state is a SOTS with pj = 1
d

and the triangle state is a SOTS for which pj = 1 for
exactly one j. By using the structure theorem for states
satisfying strong subadditivity [23], we prove [20] the fol-
lowing:

Theorem 4. A state |ψ〉ABC is a SOTS if and only if
h(A : B) = 0.
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As a corollary, while in general h(A : B) 6= h(B : C) 6=
h(C : A), if one vanishes then all of them vanish (and
likewise for g).
g and h for 1D gapped systems — We now give a phys-

ical interpretation of these structure theorems in the con-
text of 1D Hamiltonians: we argue that on a ring with
the tripartition shown in Fig. 1, a system is gapped if
and only if h = 0, and gapped without long-range order
if and only if g = 0. As motivation, consider the two lim-
iting gapped phases of the 1D Ising model: the symmet-
ric paramagnet, |PM〉 = |→→ · · ·〉, and the ferromag-
net |FM〉 = 1√

2

(
|↑↑ · · ·〉 + |↓↓ · · ·〉

)
. When partitioned

into 3 subsystems, the |PM〉 (|FM〉) state corresponds
to a product state (GHZ state), so it will have g = 0
(g = log 2) and for both, h = 0. Indeed, we see that g is
sensitive to the “cat state” structure of the exact ground
state in a symmetry-broken phase, so will generically de-
tect the multiplicity of super-selection sectors. Away
from these extremal points, the ground state develops
additional short-range entanglement. However, so long
as sizes of the regions NA, NB , NC are larger than the
correlation length ξ, this additional entanglement simply
dresses the product state within each superselection sec-
tor into a triangle state, and so with exponential accuracy
in N/ξ, g and h are unchanged.

The argument can be phrased most precisely in the
language of matrix product states. We first take a finite-
dimensional MPS as an approximation to the ground
state of a 1D system [24]. The thermodynamic limit is
taken by fixing NA/N,NB/N and taking N →∞, where
N is the total system size. In the thermodynamic limit
we can then apply the standard MPS coarse-graining
procedure [25] to obtain a fixed-point MPS. If the ini-
tial correlation length is finite [26], the state flows to an
MPS with ξ = 0. It is straightforward to show that a
ξ = 0 MPS is precisely the N -party generalization [27]
of a triangle state [25, 28], so by the structure theorems
we obtain g = h = 0. On the other hand, if the MPS
has an infinite correlation length (e.g., it is a cat state
as occurs for spontaneous symmetry breaking or phase
coexistence), then it flows to a sum of ξ = 0 MPS which
are locally orthogonal [20, 29]. Thus in the long-range
ordered phase we have g 6= 0 and h = 0. These cases are
analyzed in greater detail in [20]. Note that the precise
statement of our claim is thus as follows: A fixed-point
MPS has h(A : B) = 0 for all contiguous tripartitions.
Since all MPS flow towards fixed-point MPS under coarse
graining, h(A : B)→ 0 as NA, NB →∞ [30].
Gapless systems — At a critical point g and h need

not vanish. In fact, they are universal constants which
depend only on the emergent CFT in the thermodynamic
limit.

We now briefly describe the algorithm to compute g
and h of the ground state of a critical quantum spin chain
with N sites and Hamiltonian H. First the ground state
|ψ〉ABC is obtained in the form of a periodic uniform MPS

………………

FIG. 2. The state before and after coarse-graining. Top: The
periodic uniform matrix product state (puMPS) represents
the ground state of a translation-invariant critical quantum
spin chain before coarse-graining. Bottom: The puMPS is
coarse-grained into a MPS with 3 tensors corresponding to
the coarse-grained Hilbert spaces HÃ,HB̃ ,HC̃ .

(puMPS) [31–33]. A puMPS consists of N copies of the
same rank-3 tensor M with dimensions D×D×d, where
d is the dimension of the Hilbert space on each site, and
D is the bond dimension which grows polynomially with
the system size N (Fig. 2). The tensor M is obtained
variationally by minimizing the expectation value of H.
We then apply the standard MPS coarse-graining pro-
cedure [20, 25] to “compress” the Hilbert space of each
region down to a smaller one via a sequence of isometries,
Hα → Hα̃. Because the entropy of each region is sub-
extensive, Sα � Nα log(d) – even at a critical point – we
can reduce the dimension of the Hilbert space d̃α � dα
while preserving all the bipartite and tripartite entangle-
ment properties among the three parties A, B and C to
high-accuracy. The coarse-grained state |ψ̃〉ÃB̃C̃ can be
represented by a MPS with three tensors Mα with dimen-
sions D ×D × d̃α (Fig. 2), where d̃α ≤ D2. D, d̃α grow
polynomial with system size; as an example, for the Ising
CFT we use D = 12, d̃α = 36 for N = 24 and D = 26,
d̃α = 100 for N = 84.

We compute SR(A : B) according to Eq. (4) in the
dense representation. Assuming that d̃A ≤ d̃B , the total
time cost scales as O

(
d̃4
Ad̃

2
B

)
. To compute EP (A : B), we

first make a random split of HC̃ into HC̃L
⊗ HC̃R

with

dimensions d̃CL
×d̃CR

. We then numerically minimize the
entanglement entropy of ÃC̃L with respect to a unitary
UC̃ on C̃,

EP (A : B) = min
UC̃

SÃC̃L

(
UC̃ |ψ̃〉ÃB̃C̃

)
. (8)

We verified numerically that the d̃α are large enough to
achieve the (near) optimal purification. The numerical
optimization can be performed with, e.g., the non-linear
conjugate gradient algorithm, since the gradient can be
constructed explicitly (see [20]). The time cost of each
gradient calculation scales as O(d̃2

Ad̃B d̃
2
C), assuming that

d̃A ≤ d̃B . The mutual information I(A : B) can also be
computed using the coarse-grained state, with time cost
O(d̃3

max), where d̃max ≡ maxα{d̃α}.
g and h for various CFTs — In order to show that g

and h are universal, we study the Ising model with an
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FIG. 3. g(A : B) and h(A : B) from the model Eq. (9) with
different λ’s. At λ = 0 and λ = 0.3, the quantities converge
to gCFT and hCFT of the Ising CFT. At λ = λ∗ ≈ 0.428, both
quantities converge to a different value that corresponds to the
tricritical Ising CFT. At λ = 0.4 we observe a renormalization
group flow from the tricritical Ising CFT to the Ising CFT.

irrelevant near-to-nearest neighbor interaction [34],

H =

N∑
j=1

[
−XjXj+1 − Zj
+λ
(
XjXj+1Zj+2 + ZjXj+1Xj+2

) ] , (9)

where Xj(Zj) are Pauli X(Z) matrices on sites j and
periodic boundary conditions are assumed. The model is
critical described by the Ising CFT for λ < λ∗, gapped for
λ > λ∗, where the transition at λ∗ ≈ 0.428 is described by
the tricritical Ising CFT [34]. We study four parameter
values, λ = 0, 0.3, 0.4, λ∗, where the first three correspond
to the Ising CFT and the last correspond to the tricritical
Ising CFT.

We fix NA = NB = NC = N/3 and compute g(A : B)
and h(A : B) as a function of N , shown in Fig. 3. We
see that both g and h converge to a constant as N →∞
[35]. Furthermore, the constant is the same for λ = 0
and λ = 0.3, indicating that g and h are universal. We
denote the universal quantities as gCFT and hCFT. At λ =
λ∗ ≈ 0.428, we obtain a different value that corresponds
to the tricritical Ising CFT. At λ = 0.4, both g and h go
through a renormalization group flow from the tricritical
Ising CFT to the Ising CFT, analogous to the spectral
flow observed in Ref. 31. The values of gCFT and hCFT for
various CFTs are summarized in Table 1.

We also verified that the values of gCFT and hCFT do not
depend on the relative sizes of A,B,C [20]. For any ratio
NA/N andNB/N , once we take the thermodynamic limit
N → ∞, both g(A : B) and h(A : B) converge to the
universal constants gCFT and hCFT.

We proceed to examine how gCFT and hCFT depend on
the conformal data of the CFT. To do so we compute
gCFT and hCFT for the free compactified boson CFT for
differing compactification radius R. All have the same
central charge c = 1, but the operator content depends
on R. A concrete lattice realization of the CFT is the

Theory c gCFT hCFT c
3

log 2

gapped symmetric 0 0 0 0

long-range ordered 0 > 0 0 0

Ising CFT 1/2 0.450 0.1155 0.11553

Tricritical Ising CFT 7/10 0.719 0.1617 0.16173

Free boson R =
√

3 1 0.920 0.2310 0.23105

Free boson R = 2 1 0.899 0.2310 0.23105

Free boson R =
√

6 1 0.906 0.2310 0.23105

TABLE I. gCFT and hCFT extracted numerically through finite
size scaling. For the gapped spin chains, the universal values
of g and h are shown. For the gapless spin chains, we show
the central charge c as well as gCFT and hCFT of the CFTs.
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FIG. 4. g(A : B) and h(A : B) from the XXZ model with
different ∆’s at sizes 18 ≤ N ≤ 48. We see that gCFT depends
on ∆ while hCFT is independent of ∆.

XXZ model,

H =
∑
j

(
XjXj+1 + YjYj+1 + ∆ZjZj+1

)
, (10)

where −1 ≤ ∆ < 1 is a parameter that determines
the compactification radius R =

√
2π/ cos−1(−∆). We

compute gCFT and hCFT for different R’s by extrapolating
g(A : B) and h(A : B) for different ∆’s to the thermo-
dynamic limit. The result is shown in Fig. 4 and Tab. I,
where R =

√
3, 2,
√

6 correspond to ∆ = 0.5, 0,−0.5, re-
spectively [36].

We see that hCFT does not depend on ∆ and is compat-
ible with hCFT = c

3 log 2. On the other hand, gCFT depends
on ∆ and thus on R. For example, as shown in Table I,
gCFT takes on three different values at ∆ = 0, 0.5,−0.5,
which correspond to R = 2,

√
3,
√

6, respectively. We
conclude that hCFT only depends on the central charge
but gCFT depends on the whole operator content. This
feature of hCFT can be understood as follows. The canon-
ical purification of ρAB can be regarded as the ground
state of a CFT living on a circle, divided into four con-
tiguous segments A,B, B̄, Ā. The measure h(A : B) =
SAĀ − SA − SB + SAB involves only contiguous pieces
and is hence proportional to the central charge.
Discussion — In this work we have introduced two

positive quantities g and h which quantify the obstruc-
tion to factorizing a tripartite state into pairwise cor-
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relations. While the entanglement wedge cross section
duality EW = EP = SR/2 predicts h = g = c

3 log(2), for
low-c CFTs like the Ising model we find g > h = c

3 log(2).
The gap g − h is universal, but it remains an open ques-
tion how to compute it from the underlying data of the
CFT. It is natural to conjecture a general bound g ≥ h,
which would follow from the monotonicity of SR under a
partial trace.
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