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Understanding the activity of large populations of neurons is difficult due to the combinatorial
complexity of possible cell-cell interactions. To reduce the complexity, coarse-graining had been
previously applied to experimental neural recordings, which showed over two decades of apparent
scaling in free energy, activity variance, eigenvalue spectra, and correlation time, hinting that the
mouse hippocampus operates in a critical regime. We model such data by simulating conditionally
independent binary neurons coupled to a small number of long-timescale stochastic fields and then
replicating the coarse-graining procedure and analysis. This reproduces the experimentally-observed
scalings, suggesting that they do not require fine-tuning of internal parameters, but will arise in any
system, biological or not, where activity variables are coupled to latent dynamic stimuli. Parameter
sweeps for our model suggest that emergence of scaling requires most of the cells in a population
to couple to the latent stimuli, predicting that even the celebrated place cells must also respond to
non-place stimuli.

A key problem in modern biological physics is extract-
ing useful knowledge from massive data sets enabled by
high-throughput experimentation. For example, now one
can record simultaneous states of thousands of neurons
[1–5] or gene expressions [6–8], or the abundances of
species in microbiomes [9–11]. Inferring and interpreting
the joint probability distributions of so many variables
is difficult. A promising resolution to the problem is to
adapt the Renormalization Group (RG) [12] framework
for coarse-graining systems in statistical physics to find
relevant features and large-scale behaviors in biological
data sets as well. Indeed, RG-inspired coarse-graining
showed an emergence of nontrivial scaling behaviors in
neural populations [13, 14]. Specifically, the authors an-
alyzed the activity of over 1000 neurons in the mouse
hippocampus as the animal repeatedly ran through a vir-
tual maze. Their coarse-graining scheme involved com-
bining the most correlated neurons into neural clusters
by analogy with Kadanoff’s hyperspins [15], while using
cluster-cluster correlations as a proxy for locality. Vari-
ous correlation functions of neural clusters exhibited self-
similarity for different cluster sizes, suggestive of critical-
ity. Further analysis inspired by Wilson’s momentum
space approach to renormalization [16] revealed that the
joint distribution of cluster activities flowed to a non-
trivial, non-Gaussian fixed point. The apparent scaling
relations persisted for only a decade or two (limited by
the size of the experimental system), and it was unclear
whether they would exist for larger systems. Nonethe-
less, the observations were intriguing, and mechanisms
responsible for them remain unknown. Thus it is unclear
which other systems may exhibit them.
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Observation and interpretation of signatures of criti-
cality in high-throughput biological experiments is a sto-
ried field [17–22]. As a specific example, one commonly
observed signature is the Zipf’s law, which describes a
power-law relation between the rank and the frequency of
a system’s states. It has been explained by the existence
of stationary latent (unobserved) fields (such as stimuli
or internal states) that couple neurons (spins) over long
distances [23, 24]. Similarly, here we show that the ob-
servations of Ref. [14], including apparent scaling proper-
ties of the free energy, the cluster covariance, the cluster
autocorrelations, and the flow of the cluster activity dis-
tribution to a non-Gaussian fixed point can be explained,
within experimental error, by a model of non-interacting
neurons coupled to multiple latent dynamical fields. This
novel model is the first to explain such a variety of spatio-
temporal scaling phenomena observed in large-scale bio-
logical data, and to our knowledge, is the first model to
explore these phenomena using multiple time-dependent

latent fields. While developed for the specific neural
dataset, the model is much broader: it predicts that sim-
ilar spatio-temporal scaling relations will emerge without
fine-tuning in other multivariate datasets, biological and
inanimate, with latent dynamical variables.

Below we introduce the model, implement the coarse-
graining of Ref. [14] on data generated from it and com-
pare our findings with experimental results. We conclude
by discussing which other experimental systems may ex-
hibit similar apparent scaling relations under the RG pro-
cedure.

The model. — To understand how scaling relations
could arise from coarse-graining data from large-scale
systems, we study a model of N binary neurons (spins)
si ∈ {0, 1}, i ∈ [1, N ], where si = 0 or 1 corresponds to
a neuron being silent or active. The neurons are condi-
tionally independent and coupled only by Nf fields hm(t),
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m ∈ [1, Nf ] such that the probability of a population be-
ing in a certain state {si} is

P ({si}|{hm}) =
1

Z({hm})
eH({si},{hm}), (1)

where Z is the normalization, and H is the “energy”:

H = η





N,Nf
∑

i,m=1

hm(t)Wimsi + ǫsi



 . (2)

Here ǫ is the bias toward silence, η controls the variance
of individual neuron activity, and Wim are coupling con-
stants linking neurons to fields. The model includes two
types of fields (place and latent), explained below.
In the experiment analyzed in Ref. [14], a mouse ran on

a virtual track repeatedly, while neural activity in a pop-
ulation of hippocampal neurons was recorded. A subset
of these neurons, called place cells, are activated when
the mouse is at certain points on the track. To capture
this structure, we define place fields distributed along a
virtual track of length X . We simulate 200 repetitions of
a run along a track of length X with an average forward
speed v. As in the experiments, at the end of each run,
the mouse is transported instantaneously to the begin-
ning of the track. Thus the mouse position is x(t) = v(t
mod T ), where T = X/v = 1 is the time to run a track

length. The place fields h
(place)
m (x) are modeled as Gaus-

sians with centers µm ∼ unif(0, X ] and standard devi-
ations σm ∼ Γ(4, X/40) drawn from the Γ-distribution
with shape 4 and scale X/40. Coupling between a spin

and its place field W
(place)
im is nonzero with probability q,

with its value drawn from the standard Γ distribution,
Γ(1, 1). We include place fields in our model to match
the observed data, but we reproduce the apparent scal-
ing results within error bars whether or not place cells
are modeled (see Discussion and Online Supplementary

Materials) [25].
The second type of field is a latent field, which we

interpret as processes, such as head position or arousal
level, known to modulate neural activity, but not directly
controlled or measured by experiment [26]. We model

each latent field h
(latent)
m as an Ornstein-Uhlenbeck pro-

cess with zero mean, unit variance, and time constant τ .

TABLE I. Simulation parameters for Figures 1-3.

Parameter Description Value
φ latent field multiplier φ = 1.0
ǫ bias towards silence ǫ = −2.67
η variance multiplier η = 6.0
q probability of coupling

to latent field
q = 1.0

Nf number of latent fields Nf = 10
τ latent field time constant τ = 0.1

h
(place)
m presence or absence of

place fields
all cells couple to la-
tent fields, half cou-
ple to place fields

We model couplings to the latent fields as

W
(latent)
im = φ×

{

∼ N (0, 1) if i couples to latent fields,

0, otherwise.

(3)
Here ∼ N (0, 1) denotes sampling from the standard nor-
mal distribution, and φ controls the strength of latent
fields relative to place fields. We present results with all

latent fields h
(latent)
m possessing the same time constant τ

(see Tbl. I for parameters), so that temporal criticality
cannot be attributed to the diversity of time scales in the
fields driving neural activity.
While we explored many different parameter choices

(see Tbl. S1), we present results with N = 1024 [14], and
Nf = 10. Consistent with Ref. [14], we choose p = 50%
of neurons to be place cells, each coupled to its own place
field (µm, σm). Each latent field is coupled to every neu-
ron. Thus in our typical simulations, about 512 neurons
respond to place and latent stimuli, and about 512 are
exclusively latent-stimuli neurons.
Software implementation of the model is available [27].
Results. — In the following, we simulate random neu-

ral activity according to Eq. (1) and then replicate the
real-space and momentum-space coarse-graining schemes
of Ref. [14], while tracking the distributions of variables
within clusters as we iterate the coarse-graining algo-
rithms. Briefly, in each iteration of the real-space coarse-
graining scheme, pairs of highly correlated neurons are
combined into clusters. The cluster activity is the sum
of the pair’s activity. At each iteration step, the popu-
lation size is therefore halved. In the momentum-space
coarse-graining scheme, neural activity fluctuations are
projected onto the eigenvectors of the covariance matrix
of the population activity, selecting the K eigenvectors
with the largest eigenvalues, and then projected back to
the original system size, N . All results of Ref. [14] can
be quantitatively reproduced by our model, and we in-
clude corresponding experimental results in blue on each
figure when appropriate. Several scaling exponents were
not included or were only reported for a single recording
in Ref. [13], and therefore we refer to Ref. [14].
1. Scaling of the activity variance. Real-space coarse-

graining of experimental data [14] reported that the vari-
ance of the cluster variables scaled with cluster size K as
Kα, α = 1.40 ± 0.06, in one experiment. In our sim-
ulations, the coarse-grained activity variance scales as
Kα, α = 1.36 ± 0.01, over more than two decades in
K (Fig. 1A), within error bars of the experimental value.
This indicates that the microscopic variables are not fully
independent (which would be α = 1), nor are they fully
correlated (which would be α = 2).
2. Scaling of the free energy. The effective free energy

is related to the probability of silence in a cluster, and

is expected to scale as a power of cluster size, K β̃ [14].
Specifically, we marginalize Eq. (1) over all fields:

P ({si}) =

∫

d{hm}P ({hm})P ({si}|{hm}) (4)
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FIG. 1. (A) Activity variance of coarse-grained variables at each coarse-graining iteration, fit to ∝ Kα, α = 1.37± 0.01. This
is within error of the experimental observation α = 1.4 ± 0.06 [14], shown in blue. (B) Average free energy, Eq. 5, at each

coarse-graining iteration, fit to ∝ Kβ̃ , β̃ = 0.84±0.01, again close to experimentally found β̃ = 0.88±0.01 [14]. (C) Eigenvalue
spectrum of cluster covariance for cluster sizes K = 32, 64, 128 against the scaled rank, averaged over clusters. We observe
scaling as in Eq. (6) for ∼ 1.5 decades with µ = 0.65 ± 0.01, within error of the experimental µ = 0.71 ± 0.06 [14]. For all
panels, error bars are standard deviations over randomly selected contiguous quarters of the simulation.
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FIG. 2. (A) Average autocorrelation function for cluster sizes K = 2, 4, ..., 256 as a function of time. (B) Same data, but with
time rescaled by the appropriate τc for each cluster size. (C) Time constants τc extracted from each curve in (A) obey τc ∝ K z̃,
z̃ = 0.27 ± 0.01, for roughly 1 decade. Experimentally found z̃ is shown in blue [14]. Error bars are standard deviations over
randomly selected contiguous quarters of the simulation.

and compute lnP ({si = 0}) = lnP ({si = 0}|{hm}) +
ln
∑

{hm} P ({hm}), where P ({si = 0}) is the probability

that all neurons {si} are silent. This defines

F ({si}) = − lnP ({si = 0}|{hm}), (5)

where F ({si}) is effective free energy. In Fig. 1B, we ob-
serve that the average free energy at each coarse-graining
step scales, with exponent β̃ = 0.84± 0.01, within error
bars of experimental results, 0.88± 0.01 [14].
3. Scaling of the eigenvalue spectra. We expect the

eigenvalues of the covariance matrix of microscopic vari-
ables within each cluster to scale as a power law of the
scaled eigenvalue rank [14]. Thus there are two scalings:
the rank by the cluster size, and the eigenvalue by the
scaled rank. Specifically, the Rth eigenvalue λR of a clus-

ter of size K was shown in [14] to follow

λR ∝

(

K

R

)µ

. (6)

In Fig. 1C, we plot the average eigenvalue spectrum of
the covariance matrix for each coarse-grained variable for
cluster sizes K = 16, 32, 64, 128, 256. We observe scaling
according to Eq. 6 for roughly 1.5 decades, with scal-
ing exponent µ = −0.65± 0.01, within error bars of the
experimental value µ = −0.71± 0.06.
4. Scaling of the correlation time. Another signature

of critical systems is that the timescale of cluster auto-
correlation τc is a power law of length scale (cluster size
K) with exponent z̃. In Fig. 2A we plot the average auto-
correlation function for K = 4, 8, ..., 256. In Fig. 2B, we
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FIG. 3. Distribution of coarse-grained variables for k =
N/16, N/32, N/64, N/128 modes retained under momentum-
space coarse-graining, with a Gaussian distribution (gray
dashed line) shown for comparison. Notice that the
momentum-space coarse-grained variables may take nega-
tive values. The distribution of coarse-grained variables ap-
proaches a non-Gaussian limit as k decreases. Error bars are
standard deviations over randomly selected contiguous quar-
ters of the simulation.

show the same data as a function of rescaled time, τ/τc,
where τc is calculated by fitting the correlation function
to the exponential form. The collapse shown in Fig. 2B
suggests that C(t/τc) is scale invariant. We then observe
a power law relation between the time constant τc and
the cluster sizeK for roughly 1.5 decades in Fig. 2C, with
a scaling exponent z̃ = 0.27± 0.01. For the recording re-
ported in Ref. [14], the exponent was somewhat different,
z̃ = 0.16±0.02, but the value over three different record-
ings, z̃ = 0.22± 0.08 ± 0.10 (mean, individual recording
rms errror, standard deviation across recordings) again
matches our result.
5. Flow to a non-Gaussian fixed point. We replicated

the momentum space coarse-graining analysis of Ref. [14].
We first calculated the covariance matrix Γij of the neu-
ral activity fluctuations matrix Φit = Sit − 〈Sit〉t, where
i indexes neurons and t indexes time step. We then cal-
culated the eigenvalues and eigenvectors of Γij and con-

structed a matrix S̃ij containing the eigenvectors in its
columns, ordered by the corresponding eigenvalues, from
largest to smallest. Summing over the first k modes, we
calculated the coarse-grained variable

S
(k)
it = zi

N,k
∑

l,j′

S̃ij′ΦltS̃lj′ , (7)

where we set zi such that 〈[S
(k)
it ]2〉t = 1 [14].

In Fig. 3, we follow the distribution of S
(k)
it over coarse-

graining cut-offs k. As the coarse-grained variables are
linear combinations of the original variables, if correla-
tions between the original variables are weak, the dis-
tribution will approach a Gaussian due to the central

limit theorem. However, close to criticality, the sys-
tem may flow to a non-Gaussian fixed point. We show

the distributions of coarse-grained variables S
(k)
it for k =

N/16, N/32, N/64, N/128 modes retained, observing the
flow to a non-Gaussian limit as k decreases: the limit dis-
tribution retains a sharp peak at 0 and a heavy positive
tail, similar to experiments [14].
Experimental agreement. To investigate which param-

eter regimes give rise to scaling in our model, we vary
the parameters η, φ, and ǫ in Eq. (2), the latent field cor-
relation time τ , the number of latent fields Nf , and the
probability that a neuron couples to a latent field q. We
vary them one at a time, while keeping other parameters
at values in Tbl. I. We also run simulations with only la-

tent fields h
(latent)
m , or with only place fields h

(place)
m . We

record parameters whose simulations display eigenvalue
spectra collapse for at least 1.5 decades, as in Fig. 1D,
and activity variance scaling for over 2 decades, as in
Fig. 1A. Parameter regimes leading to apparent scaling
are summarized in Tbl. S1, with detailed plots shown in
Online Supplementary Materials [25]. We show scatter
plots of pairs of scaling exponents (if scaling is observed)
in Fig. S8, compared to the values from three different
experiments as reported in Ref. [14]. Our simulations
show that a broad range of parameters lead to scaling
exponents in quantitative agreement with experiments.
Briefly, to achieve nontrivial robust scaling, one crucially
needs ≥ 5 strong latent fields, as well as a strong bias
towards silence.
Discussion. — When the number of activity variables

is large, working with their joint probability distributions
is hard, and one coarse-grains to develop interpretable
models of the data. We have shown that, under two dif-
ferent coarse-graining schemes, a model of population ac-
tivity, in which neurons (spins) are randomly coupled to
a few slowly varying latent stimuli or fields (certainly an
amount insufficient to overfit the data) replicates power
law scaling relationships and the flow of activity distri-
butions to a non-Gaussian fixed point, reported in mouse
hippocampus experiments [13, 14]. Other models, such
as a randomly connected rate network [28], or a spik-
ing Brunel neural network in the synchronous irregular
regime [29], cannot reproduce these results [14]. In the
latter case, one can approximate the network by a pop-
ulation of uncoupled neurons driven by a single common
time-varying input [20], but we show that the emergence
of scaling requires multiple time-dependent latent pro-
cesses, explaining why previous models cannot reproduce
these hippocampal data.
Our parameter sweeps show that emergence of scaling

in the model is robust to parameter changes. The exis-
tence of scaling is most sensitive to nearly all cells having
significant latent field coupling, irrespective of whether
they additionally couple to place fields. This is especially
clear in Fig. S13, where only simulations with widespread
latent field coupling reproduce the autocorrelation time
collapse [25]. This allows us to make an interesting – and
testable – biological prediction that even place cells in
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hippocampus must be driven not solely by the animal’s
position. This is consistent with the observations that
place cells carry about as much information about activ-
ity of other cells in the population as they carry about
the animal’s position [30]. Further, since it is difficult
to reproduce temporal scaling over many decades using
latent fields with a single time constant, but diversity of
time constants makes it easier (see Online Supplemen-

tary Materials) [25]), another testable prediction of our
analysis is that the latent fields are likely to have diverse
time scales.

More broadly, we have shown that the surprising
spatio-temporal scaling results of Ref. [14] can be ex-
plained by the presence of multiple unknown, time-
varying latent fields (possibly with just a single time
constant). To our knowledge, this is the first model
able to explain such observations, though models of re-
lated spatio-temporal scaling phenomena (e. g., neural
avalanches) certainly exist [31]. The coarse-graining ap-
proach we study here, and especially the momentum
space analysis, has been shown effective in distinguishing
critical and non-critical models [32]. This makes it even
more surprising that the approximately scale-free distri-
butions necessarily emerge under renormalization in our

class of models, which do not require fine-tuning, and
that the scaling relations become more robust for larger
systems sizes (see Online Supplementary Materials) for
results with an order of magnitude more neurons [25]).
This raises questions whether and when apparent scal-
ing in multivariate biological systems can be viewed as
evidence of more traditional criticality, which emerges
through fine-tuning of internal interaction parameters.
While here we have focused on neural data, our more
important result is the prediction that the apparent scal-
ing relations discussed in this Letter, whether they should
be viewed as signatures of criticality or not, will emerge
from any sparsely active multivariate system (whether
biological, inanimate, social, or human-made) driven by
several latent dynamical processes.
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