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We study the quantum phase diagram of electrons on kagome lattice with half-filled lowest flat
bands by considering the antiferromagnetic Heisenberg interaction J , and short-range Coulomb
interaction V . In the weak J regime, we identify a fully spin-polarized phase. The presence of
finite V drives a spontaneous chiral current, which makes the system an orbital Chern insulator
by contributing an orbital magnetization. Such an out-of-plane orbital magnetization allows the
presence of a Chern insulating phase independent of the spin orientation in contrast to the spin-
orbit coupling induced Chern insulator that disappears with in-plane ferromagnetism constrained
by symmetry. Such a symmetry difference provides a criterion to distinguish the physical origin
of topological responses in kagome systems. The orbital Chern insulator is robust against small
coupling J . By further increasing J , we find that the ferromagnetic topological phase is suppressed,
which first becomes partially-polarized and then enters a non-magnetic phase with spin and charge
nematicity. The frustrated flat band allows the spin and Coulomb interaction to play an essential
role in determining the quantum phases.

Introduction—. The geometrical frustration of kagome
lattice has attracted much attention in the past few
decades [1–19]. At half filling, the frustration of anti-
ferromagnetic spins can lead to quantum spin liquid
phases and other exotic magnetic orders [1–3, 7–9].
Besides, the frustration of electronic hopping leads to
a flat band that shows quadratic crossing with Dirac
bands [20]. At a semi-metallic filling with linear or
quadratic Fermi point, the presence of strong electronic
interaction can open a band gap at the fermi points host-
ing nontrivial topology [21–33]. Importantly, the flat
band provides a platform to study the interaction driven
exotic states with partial filling [6, 34–36]. Recently, the-
oretical calculations show that the (semi-)metallic flat
bands can be achieved in realistic materials of kagome
or kagome-like lattices [37–42], e.g., graphyne [40], where
interaction driven orbital magnetism and Chern insulator
have been predicted at mean-field level. In experiments,
kagome lattices of transition metals have also been ob-
served contributed from various d orbitals near the Fermi
level, which provide novel platforms to investigate the
intriguing physics from the interplay between strong re-
pulsive interaction, magnetism, and topology [43–56].

The kagome lattices formed by transition metal atoms
exhibit characteristic single-particle band structures, in-
cluding quasi-two-dimensional Dirac bands [43–46] and
flat bands near the Fermi energy [46–50]. Nontrivial band
topology is observed by measuring anomalous Hall ef-
fect and orbital magnetic moments [43–47, 51–54]. These
topological responses are closely related to the magnetic
phases and strong electronic interactions as indicated by
the experiments [43–45, 47, 54]. However, the role of

interaction, and its interplay with magnetism and topo-
logical band structure remain not clearly understood in
kagome metal systems.
In this Letter, we theoretically investigate the inter-

play of topological phases and magnetism in the presence
of strong correlation based on the extended t-J model
in Eq.(1) on kagome lattice with antiferromagnetic ex-
change interaction J and repulsive Coulomb interaction
V . For electrons at the half-filling of the lowest flat
bands, we identify three phases. At a small J , the short-
range Coulomb interaction V drives a chiral current lead-
ing to spontaneous orbital magnetization and an energy
gap hosting nonzero Chern number independent of the di-
rection of the fully polarized spin. This distinguishes the
orbital Chern insulator demonstrated here from the tra-
ditional one induced by spin-orbit coupling. Along with
the increase of J , the system first undergoes a quantum
phase transition to the partially spin-polarized phase and
finally to the non-magnetic phase with spin and charge
nematic order stabilized by both J and V .
Model and methods—. We consider a kagome lattice

of spinful fermions described by an extended t-J model
with the Hamiltonian written as:

H = t
∑

〈ij〉,α

c†i,αcj,α + J
∑

〈ij〉

(Si · Sj −
1

4
ninj)

+ V1

∑

〈ij〉

ninj + V2

∑

〈〈ij〉〉

ninj, (1)

where c†i,α (ci,α) is the creation (annihilation) opera-
tor of a fermion with spin α = {↑, ↓} at site i and

ni =
∑

α c†i,αci,α is the particle number operator. Si =
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α,β ci,β is the spin operator

with σx,y,z being Pauli matrices. The hopping term t is
set to be the energy unit, which makes the lowest en-
ergy band flat and quadratically touching with the mid-
dle one. The second term represents the exchange inter-
action with strength J > 0 (antiferromagnetic type) be-
tween each pair of nearest neighbor sites. The third and
fourth terms are the repulsive Coulomb interactions be-
tween electrons of first (〈. . .〉) and second (〈〈. . .〉〉) near-
est neighbors with strengths V1 and V2, respectively. The
Hilbert space is constrained by the no-double occupancy
condition, ni ≤ 1, which corresponds to the on-site Hub-
bard interaction U = ∞ limit.

We focus on the one-sixth filling case in a finite system
of Ny × Nx unit cells with total number of sites Ns =
3 × Ny × Nx and the number of fermions Ne = 2Ns/6.
To illustrate the phase diagram, we set V2 as a fraction
of V1 with V1 = 2V2 = V in our calculations and focus
on the competition between interaction and J [29]. To
characterize the ground states of the system with inter-
actions, we employ the finite density matrix renormal-
ization group (DMRG) algorithm [58–60] on cylinder ge-
ometry, where the boundary is open (periodic) along x
(y)-direction, respectively. In DMRG calculations, we set
Ny up to 4 unit cells (8 lattice sites) and keep the DMRG
states up to M = 12000 to guarantee a good convergence
(with the truncation error smaller than 10−5).

Phase diagram—. As each spin component is con-
served in our model, the ground states are calculated in
sub-Hilbert space with total azimuthal spin Sz ranging
from 0 to Smax with Smax = Ne/2 (results are symmetric
about positive and negative total Sz). For a system of
Ns = 3×3×4 = 36, we numerically calculate the ground-
state energies for different Sz sector in the parameter
space spanned by the short-range Coulomb interaction
V and exchange interaction J . We identify three phases
as shown in Fig. 1(a) according to the polarization of the
ground state.

In phase-I, the system is fully spin-polarized, i.e., the
ground states of different spin Sz ranging from −Smax to
Smax are all degenerate with a total spin S = Ne/2. Our
results suggest that the spontaneous ferromagnetization
in this system is very strong, which can survive to finite
antiferromagnetic coupling J ∼ 0.4. Interestingly, an in-
termediate interaction strength V ∼ 0.8 can further en-
large the regime of the fully polarized phase, which may
attribute to the enlarged energy gap by a larger V . As
J increases, we find that the ferromagnetic phase is sup-
pressed. For an intermediate J , the ground state jumps
from S = Ne/2 to a partially spin-polarized state with
a smaller total S driven by antiferromagnetic coupling,
which is illustrated as phase-II. The partially polarized
phase also becomes excited states and the ground state
lies in the spin sector of total S = 0 labeled as phase-III
in Fig. 1 for even larger J . The changing of the color
illustrates schematically the increase of the order param-
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FIG. 1: (a) Phase diagram vs on-site repulsion-interaction
strength V and exchange-interaction strength J . Phases I,
II, and III are fully spin polarized spontaneous Chern insu-
lator phase, partially polarized intermediate phase, and non-
polarized phase with a rotation-symmetry breaking charge
density wave, respectively. (b) Lowest energy level at
each sector of azimuthal spin polarization Sz vs exchange-
interaction strength J at V = 0.6. Circle, triangle, and square
stand for the system with Ns = 36, 48 and 72, separately. The
phase diagram is calculated for Ns = 3× 3× 4 = 36 site sys-
tem. The first and second nearest neighbor interactions are
V1 = 2V2 = V . The dashed lines indicate the phase bound-
aries.

eter with the increase of V , which plays an essential role
in stabilizing phase-I and III (see Supplemental Materials
for more details) [57].

We further compare results from different system sizes
to show the robustness of the quantum phase diagram.
As shown in Fig. 1(b) at fixed V = 0.6, we present the
energy difference ESz

g −E0
g between ground state energy

at different Sz = 0, 1, Smax as a function of J , for three
different system sizes Ns = 3× 4× 3 = 36, 3× 4× 4 = 48
and 3 × 3 × 8 = 72 sites, respectively. The same energy
evolution with Sz is identified for these different systems.
For a smaller J , the ground state has the total spin S =
Smax with 2S + 1-fold magnetic degeneracy, where the
lowest energies in each Sz sector has the same energy.
For J = 0.8 in phase-II, the ground state has a smaller
total spin S (i.e., S < Smax) since ESmax

g − E0
g > 0

while E1
g − E0

g = 0. For J > 1.0 in Phase-III, both

ESmax

g − E0
g > 0 and E1

g − E0
g > 0, so the ground state

of the system has total spin S = 0.

The non-polarized phase-III is a non-magnetic insula-
tor with spin and charge nematicity. In Fig. 2(a), we plot
the expectation value of electron number operator ni at
each site, where the circle size is proportional to the elec-
tron number 〈ni〉. One can find that the charge densities
for different sublattices are imbalanced, where A and B
sites show similar densities, which are much larger than
that of sublattice C. The intra-unit cell charge density
difference δni = nA,i − nC,i at ith unit cell is plotted
as a function of the unit cell position ix in the inset of
Fig. 2(b). The charge imbalance away from the bound-
aries shows weak spatial dependence. In the middle of
the system, we can see that such a charge-density pattern
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FIG. 2: Measurements of ground states in phase region III
with J = 1.5 and V = 0.5. (a) Charge density at each site.
Circle size represents the magnitude of density. (b) Scaling
behavior of the charge gap. Inset: intra-unit cell charge den-
sity imbalance δni as the unit-cell position along x direction
ix. (c) Dependence of electron hopping function Gij and spin-
spin correlation between two sites on their distance.

preserves the translation symmetry of the system while
breaks the rotation symmetry leading to the nematicity.
We have checked that such density and spin patterns are
robust against the width Ly of the cylinders, by lowering
the spin and interaction energy. The insulating nature of
this phase is characterized by a finite charge excitation
gap defined as ∆2e = E0

g(Ne+2)+E0
g(Ne−2)−2E0

g(Ne)
which is calculated in the ground state Sz = 0 spin sector
by adding/removing two electrons (one spin up and one
spin down). The scaling behavior of the charge gap as a
function of 1/Ns is plotted in Fig. 2(b), where one can
find that the charge gap is finite in thermodynamic limit
suggesting the system is an insulator.
Since J represents the strength of the antiferromag-

netic coupling, we also check if there is any magnetic
order. We show that the state is non-magnetic due to
the small site filling number where the antiferromagnetic
coupling becomes less efficient. The spin-spin correlation
|〈Si · Sj〉| decreases exponentially as a function of the
distance between two sites as shown in the lower panel
of Fig. 2(c), where the correlation between sites i and j
with the same y coordinate is plotted as a function of
their distance ix − jx along x-direction. Nevertheless,
the spin-spin correlation between the nearest neighbor-
ing sites shows nematicity that further lowers the total
energy [57]. We also study the electron hopping function

Gij ≡ 〈c†i cj〉 as shown in the upper panel of Fig. 2(c)
where the magnitude of Gij also decreases exponentially
as the distance increases, being consistent with a charge
insulator state.
The partially polarized phase-II shows a spin polariza-

tion close to the fully polarized state [57] with flipped
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FIG. 3: (a) Variation of ground state energy due to the pres-
ence of nonzero tC at different J for Ns = 36 sites. The slope
of each curve at tC = 0 represents the average current 〈j〉 of
the system as labelled by the number nearby. (b) Size scaling
of current at the corresponding J . The repulsion interaction
V = 0.6 here.

spins appear at the boundary of the system. To under-
stand if such a phase can extend to intermediate spin po-
larization, larger systems are required, which is beyond
our current simulation capability.
Spontaneous chiral current—. We now turn to Phase-I

where the system is fully spin-polarized. Our result is
complementary to the kinetic ferromagnetism in Ref. 6
that is insensitive to the sign of hopping energy and focus
on the regime of |t| ≪ V . Besides, the weak J limit corre-
sponds to a large U and the ferromagnetic ground state
agrees with the graph-theory analysis of t-U model on
kagome lattice with Hubbard U > 0 [62]. In the follow-
ing, we reveal the nontrivial orbital effect and electronic
topology besides the ferromagnet when the Coulomb in-
teraction beyond on-site Hubbard U is included.
Here, we demonstrate the spontaneous chiral currents

appear in the ferromagnetic phase of the spinful model in
the presence of finite V . We consider a chiral-symmetry-
breaking hopping term hC = iχtC

∑
〈ij〉,α c†i,αcj,α as a

perturbation, where tC ≪ t = 1 is small and χ = ±1
when the electron hopping is clockwise/anti-clockwise in
each triangle. We can then detect the loop current fol-
lowing the Hellmann-Feynman theorem [31, 63, 64] via

〈j〉 =
1

2Ns

∂E(tC)

∂tC
|tC→0, (2)

where E(tC) = 〈Ψ|H(hC)|Ψ〉 with |Ψ〉 being the ground
state of the system and Ns is the number of sites. In
Fig. 3(a), we show the ground state energy difference
E0

g(tC) − E0
g(tC = 0) as a function of tC for Ns = 36

with J = 0, 4, 0.8, and 1.4 representing three different
phases, respectively. One can find that in the ferromag-
netic region, the ground state energy decreases linearly as
a function of tC (we use small tC up to 0.008) correspond-
ing to a loop current of j = 0.028 for each triangle. The
constant current at weak J is robust against the system
size Ns, as shown in Fig. 3(b) where the scaling behavior
of the current as a function of 1/Ns is plotted by the red
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FIG. 4: (a)-(b) Electronic band structure and orbital mag-
netization in the presence of spontaneous chiral current and
ferromagnetism. (b) Orbital magnetization vs chemical po-
tential. Green shaded region shows the band gap. Unit of
magnetization: et

(2π)2~
. (c)-(d) Band structure and orbital

magnetization in the presence of Kane-Mele type spin-orbit
coupling and ferromagnetism. (d) Orbital magnetization vs
azimuthal angle θ that characterizes the spin orientation as
illustrated in the inset.

line with solid circles. We find that the current is finite
in the order of 10−2 at the large Ns limit, suggesting the
existence of finite current in the thermodynamic limit.
The finite current supports the quantum anomalous Hall
effect for phase-I with nonzero V .
For partially polarized and nonmagnetic phases with

J = 0.8 and J = 1.4, the ground state energies decrease
near quadratically with tC as shown in Fig. 3(a). For J =
0.8, the current keeps a small value whereas the current
drops a lot at J = 1.4 as Ns increases. We caution that
because of the quadratic behavior of currents for phase
region II and III, we will see much reduced or vanishing
current if we take the small tC limit, which is negligible
as it is related to an energy difference at the same order
as the relative error in DMRG.
Spontaneous orbital magnetization—. The sponta-

neous chiral current will manifest itself by a nonzero
spontaneous orbital magnetization. In the presence of
nonzero loop current, the mean-field electronic structure
is plotted in Fig. 4(a), which is independent of the spin
orientation and exhibits a band gap as labeled by the
shadow region. When the chemical potential lies in the
band gap at 1/6 filling, nonzero out-of-plane orbital mag-
netizationMorb appears as shown in Fig. 4(b) [57]. Inside
the gap, the linear dependence of Morb on chemical po-
tential is attributed to the chiral edge state of the Chern
insulator. The corresponding magnetic moment per unit
cell is µB

2me

m∗
where theme is the mass of electron and the

effective mass m∗ = (2π~)2

tAu
is defined by the energy unit t

and the unit cell area Au. By employing the typical hop-

ping energy t ∼ 0.5 eV and lattice constant a ∼ 0.5 nm of
kagome lattice in kagome metal [46], the corresponding
magnetic moment per unit cell is about 0.05 µB. This
makes the spontaneous Chern insulator an orbital mag-
net independent of the spin polarization.

In contrast, for the topological phase induced by spin-
orbit coupling, the band topology and the associated
orbital magnetization show strong dependence on the
spin orientation [57]. In the presence of the symmetry-
allowed Kane-Mele type spin-orbit coupling [57] in a
plannar kagome lattice, the in-plane ferromagnetism (the
azimuthal angle θ = π/2) cannot open a band gap as
shown in Fig. 4(c). Thus, in the absence of chiral cur-
rent, the system is topologically trivial with in-plane fer-
romagnetism, which is constrained by the symmetry. The
corresponding orbital magnetization is also zero as shown
in Fig. 4(d) where the orbital magnetization is plotted as
function of the spin orientation in the presence of only
spin-orbit coupling and ferromagnetism. One can find
that both the magnitude and the sign of the orbital mag-
netization depend strongly on the spin-orientation θ.
Summary and discussion—. We have demonstrated

the quantum phase diagram of an electronic kagome lat-
tice with half-filled lowest flat-band by considering the
interplay between the short-range Coulomb interaction
V and the nearest neighbor antiferromagnetic Heisenberg
interaction J . In the large J limit, the system is a non-
magnetic insulator with spin and charge nematicity. The
Coulomb interaction V plays an essential role to stabi-
lize this phase in the presence of flat band with frustrated
kinetic energy. As J decreases gradually, the system be-
comes partially polarized first. In the weak J regime,
the system exhibits a fully spin-polarized ferromagnetic
phase. The short-ranged Coulomb interaction V drives
the formation of spontaneous chiral current, which man-
ifests itself as an orbital magnet. The orbital magneti-
zation points out of plane that is also independent of
the spin polarization. This provides another example
for the presence of orbital magnet independent of the
spin polarization besides the magic-angle twisted bilayer
graphene [66–68].

Such out-of-plane orbital magnetization breaks the
mirror symmetries and thus allows the presence of an
orbital Chern insulator, which is independent of the spin
polarization. In contrast, the Chern insulator induced
by spin-orbit coupling shows a strong dependence on the
spin polarization, which disappears when the polariza-
tion lies in-plane constrained by symmetry. Our work
provides a way to distinguish these two types of Chern
insulators for realistic materials.
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