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The tensor product postulate of quantum mechanics states that the Hilbert space of a composite
system is the tensor product of the components’ Hilbert spaces. All current formalizations of quan-
tum mechanics that do not contain this postulate contain some equivalent postulate or assumption
(sometimes hidden). Here we give a natural definition of composite system as a set containing
the component systems and show how one can logically derive the tensor product rule from the
state postulate and from the measurement postulate. In other words, our paper reduces by one the
number of postulates necessary to quantum mechanics.

In this paper we derive the tensor product postulate
(which, hence, loses its status of postulate) from two
other postulates of quantum mechanics: the state pos-
tulate and the measurement postulate. The tensor prod-
uct postulate does not appear in all axiomatizations of
quantum mechanics: it has even been called “postulate
0” in some literature [1]. A widespread belief is that
it is a direct consequence of the superposition princi-
ple, and it is hence not a necessary axiom. This belief

is mistaken: the superposition principle is encoded into
the quantum axioms by requiring that the state space
is a linear vector space. This is, by itself, insufficient
to single out the tensor product, as other linear prod-
ucts of linear spaces exist, such as the direct product,
the exterior/wedge product or the direct sum of vector
spaces, which is used in classical mechanics to combine
state spaces of linear systems. These are all maps from
linear spaces to linear spaces but they differ in how the
linearity of one is mapped to the linearity of the oth-
ers [32]. This belief may have arisen from the semi-
nal book of Dirac [2], who introduces tensor products
(Chap. 20) by appealing to linearity. However, he adds
the seemingly innocuous request that the product among
spaces be distributive (rather, bilinear), which is equiv-
alent to postulating tensor products (or linear functions
of them). It is not an innocuous request. For example it
does not hold where the composite vector space of two
linear spaces is described by the direct product, e.g. in
classical mechanics, for two strings of a guitar: it is not
distributive. [General classical systems, not only linear
ones, are also composed through the direct product.] Of
course, Dirac is not constructing an axiomatic formula-
tion, so his ‘sleight of hand’ can be forgiven. In contrast,
von Neumann ([3] Chap. VI.2, also [4]) introduces tensor
products by noticing that this is a natural choice in the
position representation of wave mechanics (where they
were introduced in [5, 6]), and then explicitly postulates

them in general: “This rule of transformation is correct in
any case for the coordinate and momentum operators [...]
and it conforms with the [observable axiom and its lin-
earity principles], we therefore postulate them generally.”
[3]. More mathematical or conceptually-oriented modern

formulations (e.g. [8–11]) introduce this postulate explic-
itly. An interesting alternative is provided in [12, 13]:
after introducing tensor products, Ballentine verifies a
posteriori that they give the correct laws of composition
of probabilities. Similarly, Peres uses relativistic local-
ity [14]. While these procedures seemingly bypass the
need to postulate the tensor product, they do not guar-
antee that this is the only possible way of introducing
composite systems in quantum mechanics. In the frame-
work of quantum logic, tensor products arise from some
additional conditions [15] which (in contrast to what is
done here) are not connected to the other postulates. In
[16, 17] tensor products were obtained by specifying ad-
ditional physical or mathematical requirements.
Let us first provide a conceptual overview of our ap-

proach. We start from the natural definition of a compos-
ite system as the set of two (or more) quantum systems.
The composite system is therefore made of system A and

(joined with) system B and nothing else. The first key
insight is that the first two postulates of quantum theory
(introduced below) already assume that the preparation
of one system is independent from the preparation of an-
other (statistical independence). In fact, we cannot even
talk about a system in the first place if we cannot char-
acterize it independently. The second key insight is that,
using the law of composition of probabilities of indepen-
dent events, we can find a map M that takes the state
of the component systems and gives the composite state
for the statistically independent case. These insights are
enough to characterize mathematically the state space of
the composite: the linearity given by the Hilbert space,
together with the fact that the composite system is fully
described by the observables of A and B, allows us to
extend the construction from the statistically indepen-
dent composite states to the general case (that includes
entangled states). So the work consists of two interre-
lated efforts: a physical argument that starts from the
first two postulates and leads to the necessary existence
of the composition map M and its properties together
with a formal argument that shows how M leads to the
tensor product.
This mapM acts on the state spaces of the subsystems.
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Each pure state is identified by a ray ψ, a subspace of the
system’s Hilbert space comprising all vectors ψ differing
by their (nonzero) modulus and phase: a one-dimensional
complex subspace (a complex plane). In the same way,
constraining the observable X to a particular outcome
value x0 means identifying the subspace comprising all
non-normalized eigenvectors |x0〉 of arbitrary phase such
that X |x0〉 = x0|x0〉. The map M establishes a rela-
tionship between the states of the subsystems and the
composite, so it is a map between subspaces, not vec-
tors. Therefore, M acts on the projective spaces, where
all vectors within the same ray are “collapsed” into a sin-
gle point (i.e. a quotient space in the equivalence class),
removing the unphysical “overspecification” of the phase
and of the modulus. The physical requirements on M

are such that we can find a bilinear map m between vec-
tors that acts consistently with M in terms of subspaces.
This map m is the tensor product.

More in detail, the physical requirements of statistical
independence, together with the fact that one can arbi-
trarily prepare the states of the subsystems, imply three
conditions on the map m: (H1) totality: the map is de-
fined on all states of the subsystems; (H2) bilinearity:
the map is bilinear thanks to the fundamental theorem
of projective geometry; (H3) span surjectivity: the span
of the image of the map coincides with the full composite
Hilbert space. We then prove that, if these three condi-
tions H1, H2 and H3 hold, then the map m is the ten-
sor product, namely the Hilbert space of the composite
system is the tensor product of the components’ Hilbert
spaces. The tensor product “postulate” hence loses its
status of a postulate. An overview of all these logical
implications is given in Fig. 1. The rest of the paper
contains the sketch of this argument, including all the
physical arguments outlined above. The supplementary
material [7] contains the mathematical details.

FIG. 1: Schematic depiction of the logical implications used
in this paper. FTPG stands for “Fundamental Theorem of
Projective Geometry”.

We start with the axiomatization of quantum me-
chanics based on the following postulates (e.g. [8–11]):
(a) The pure state of a system is described by a ray ψ
corresponding to a set of non-zero vectors |ψ〉 in a com-
plex Hilbert space, and the system’s observable prop-
erties are described by self-adjoint operators acting on
that space; (b) The probability that a measurement of
a property X , described by the operator with spectral

decomposition
∑

x,i x
|xi〉〈xi|
〈xi|xi〉

(i a degeneracy index), re-

turns a value x given that the system is in state ψ is

p(x|ψ) =
∑

i
|〈ψ|xi〉|

2

〈xi|xi〉〈ψ|ψ〉
(Born rule). (c) The state space

of a composite system is given by the tensor product of
the spaces of the component systems; (d) The time evo-
lution of an isolated system is described by a unitary op-
erator acting on a vector representing the system state,
|ψ(t)〉 = Ut|ψ(t = 0)〉 or, equivalently, by the Schrödinger
equation. The rest of quantum theory can be derived
from these axioms. While some axiomatizations intro-
duce further postulates, we will be using only (a) and
(b) to derive (c), so the above are sufficient to our aims.

Note that we limit ourselves to kinematically-indepen-
dent systems, where all state vectors |ψ〉 in the system’s
Hilbert space H describe a valid state, unconditioned on

anything else. We call this condition “preparation inde-
pendence” and it should be noted that the tensor product
applies only in this case. For example, the composite sys-
tem of two electrons is not the tensor product, rather the
anti-symmetrized tensor product, precisely because the
second electron cannot be prepared in the same state of
the first. We note that restrictions due to superselection
rules arise either from practical (not fundamental) limi-
tations on the actions of the experimenter [18–20] or from
the use of ill-defined quantum systems. In the example
above, the field is the proper quantum system and the
electrons are its excitations. [33]

The definition of a composite system as containing only
the collection of the subsystems means that any prepara-
tion of both subsystems independently must correspond
to the preparation of the composite system. Since states
are defined by postulate (a) as rays in the respective
Hilbert spaces, there must exist a map M : A × B → C
that takes a pair of states for the subsystems (A and B
represent the projective space, where each point repre-
sents all vectors that identify the same state, and the
Cartesian product is the set of all possible pairs) and
returns a state in the projective space C for the compos-
ite. To visualize the geometrical meaning of M directly
within the Hilbert spaces, given a ray (a complex plane)
in each of A and B, M returns a ray (a complex plane)
in C. Our final goal will be to find a map m : A×B → C
that acts on vectors in the Hilbert spaces A, B and C
consistently with M . Namely, m(a, b) = M(a, b) where
the underline sign indicates the elements in the projec-
tive space. Again geometrically, m takes a vector in each
of A and B, and returns a vector in C and we want this to
be consistent with M such that vectors picked from the
same rays will return vectors in the same ray. We will
prove that the map m is the tensor product. We focus
on pure states here: the argument can be extended to
mixed states using standard tools [12].

The map M must be injective: as said above, different
states of the subsystems must correspond, by definition
of composite system, to different states of the composite.
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Moreover, preparation independence implies thatM , and
hence m, must be total maps (condition H1): each sub-
system of the composite system can be independently
prepared and gives rise to a state of the composite. H1
is not sufficient to identify the tensor product: by itself
it does not even guarantee that the map m is linear.
Postulate (b) contains the connection between quan-

tum mechanics and probability theory. It must then im-
plicitly contain the axiomatization of probability, e.g. see
[12, 13, 21]. One of the axioms of probability theory (ax-
iom 4 in [13]) asserts that the joint probability events
a and b given z is p(a ∧ b|z) = p(a|z) p(b|z ∧ a). Con-
sider p(a ∧ b|ψ ∧ b) which represents the probability of
measurement outcomes a on system A and b on system
B given that system A was prepared in ψ and system
B in b. We have p(a ∧ b|ψ ∧ b) = p(a|ψ ∧ b ∧ b)p(b|ψ ∧
b) = p(a|ψ ∧ b)p(b|ψ ∧ b). The Born rule tells us that
p(a|ψ ∧ b) = |〈a|ψ〉|2 and that p(b|ψ ∧ b) = |〈b|b〉|2 = 1,
where |a〉, |b〉 are the normalized eigenstates relative to
outcomes a and b, and |ψ〉 is the normalized state vector.
We have:

p(a ∧ b|ψ ∧ b) = p(a|ψ) (1)

p(a ∧ b|a ∧ φ) = p(b|φ) (2)

In other words, since the probability for a measurement
on one system depends only on its pure state, the Born
rule requires that the measurement of one system is inde-
pendent from the preparation of the other. We call this
property “statistical independence” [34]. It characterizes
the map M , since M(a, b) corresponds to the composite
state where A and B are prepared in the states |a〉 and
|b〉. Define Mb(a) =M(a, b). From the Born rule we find

∣

∣
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〈
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∣
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Mb (ψ)

〉

C

∣
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∣

2

= |〈a|ψ〉A|
2
, (3)

where the first and second terms contain the inner prod-
uct in the composite space C. [This is not a new assump-
tion: it follows from the measurement postulate (b) for
the composite system.] This means that, when one sub-
system is prepared in an eigenstate of what is measured
there, the state space of the other is mapped preserving
the square of the inner product. This implies orthogonal-
ity and the hierarchy of subspaces are preserved through
Mb, making Mb a colinear transformation by definition.
Geometrically, recall that Mb maps rays to rays. The
fact that Mb is colinear means that it also maps higher
order subspaces to higher order subspaces (lines to lines,
planes to planes, and so on) while preserving inclusion (if
a line is within a plane, the mapped line will be within the
mapped plane). In this case, the fundamental theorem
of projective geometry [22] applies, which tells us that
a unique semi-linear map mb that acts on the vectors
exists in accordance with Mb. Moreover, conservation
of probability further constrains it to be either linear or

antilinear. This tells us that the corresponding m is ei-
ther linear or antilinear in the first argument. Namely, if
equation (3) holds, then

〈a|ψ〉 = 〈m(a, b)|m(ψ, b)〉 (4)

or 〈a|ψ〉 = 〈m(ψ, b)|m(a, b)〉. (5)

In this setting, the antilinear case (5) corresponds to a
change of convention (much like a change of sign in the
symplectic form for classical mechanics) and can be ig-
nored. Given a Hilbert space, in fact, we can imagine
replacing all vectors and all the operators with their Her-
mitian conjugate, mapping vectors into duals |ψ〉† = 〈ψ|.
These changes would effectively cancel out leaving the
physics unchanged: the two equations A|w〉 = B|z〉 and
〈w|A† = 〈z|B† are equivalent. (For example, in his first
papers Schrödinger used both signs in his equation: ef-
fectively writing two equivalent equations with complex-
conjugate solutions [23]. Also Wigner pointed out this
equivalence [24], pg.152). We can repeat the same anal-
ysis for the second argument of m to conclude that it is
a bilinear map, condition (H2).
The last condition, span surjectivity (H3), follows di-

rectly from the definition of a composite system. Since it
is composed only of the component systems, for any state
c of the composite system, we must find at least one pair
|a〉, |b〉 such that p(a ∧ b|c) 6= 0. Span-surjectivity fol-
lows: namely the span of the map applied to all states
in the component systems spans the composite system
state space. In other words, the composite does not con-
tain states that are totally independent of (i.e. orthogonal
to) the states of the components.
We have obtained the conditions H1, H2 and H3 from

the state postulate (a), the measurement postulate (b)
and the definitions of composite and independent sys-
tems. We now prove that these three conditions imply
that the (up to now unspecified) composition rule m is
the tensor product. More precisely, given a total, span-
surjective, bilinear map m : A × B → C that maps the
Hilbert spaces A, B of the components into the Hilbert
space C of the composite and that preserves the square of
the inner product, we find that C is equivalent to A⊗ B
and that m = ⊗.
Proof. Step 1: the bases of the component systems

are mapped to a basis of the composite system. Be-
cause of totality property (H1) and because the square
of the inner product is preserved, we can conclude that,
given two orthonormal bases {|ai〉} ∈ A and {|bj〉} ∈ B,
|〈m(ai, bj)|m(ak, bℓ)〉|

2 = δikδjℓ, namely {|m(ai, bj)〉} is
an orthonormal set in C. Moreover, the surjectivity prop-
erty (H3) guarantees that in C no vectors are orthogonal
to this set. This implies that it is a basis for C.
Step 2: use the universal property. The tensor product

is uniquely characterized, up to isomorphism, by a uni-
versal property regarding bilinear maps: given two vector
spaces A and B, the tensor product A⊗B and the asso-
ciated bilinear map T : A×B → A⊗B have the property
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than any bilinear map m : A × B → C factors through
T uniquely. This means that there exists a unique I, de-
pendent on m, such that I ◦ T = m. In other words, the
following diagram commutes:

A× B A⊗ B

C

m

T

I

Since m : A×B → C is a bilinear operator (property H2),
thanks to the universal property of the tensor product we
can find a unique linear operator I : A⊗B → C such that
m(a, b) = I(a⊗ b). The set {I(ai ⊗ bj) with |ai〉 and |bj〉
orthonormal bases for A and B} forms a basis for C, since
I(ai⊗ bj) = m(ai, bj) and we have shown above that the
latter is a basis. Thus,

〈I(ai ⊗ bj)|I(ak ⊗ bℓ)〉C = 〈m(ai, bj)|m(ak, bℓ)〉C

= δikδjℓ = 〈ai ⊗ bj|ak ⊗ bℓ〉⊗, (6)

where we used the orthonormality of the bases and the
fact that |ai ⊗ bj〉 is a basis of the tensor product space
A⊗B. Since the function I is a linear function that maps
an orthonormal basis of A ⊗ B to an orthonormal basis
of C, I is a an isomorphism (a bijection that preserves
the mathematical structure) between A ⊗ B and C. As
C ∼= A ⊗ B are isomorphic as Hilbert spaces, they are
mathematically equivalent: c ∈ C and I−1(c) represent
the same physical object. In this sense, we can loosely
say that I is the identity, as it connects spaces that are
physically equivalent. So we can directly use the tensor
product to represent the composite state space. This
means that the map m : A× B → C is equivalent to the
map ⊗ : A×B → A⊗B in the sense that m◦ I−1 = ⊗.�

A few comments on the proof: it is based on the uni-
versal property of the tensor product, which uniquely
characterizes it. In step 1 we show that the bilinear map
m maps subsystems’ bases into the composite system ba-
sis. We also know that there exists a tensor product map
T = ⊗ that can compose the vectors in A and B. In step
2 we use the universal property: since m is a bilinear
map, we are assured that there exists a unique I such
that I ◦T = m. Since we show that I is an isomorphism,
then I bijectively maps vectors in C onto vectors in the
tensor product space. Namely m = T = ⊗.
We conclude with some general comments. The ten-

sor product structure of quantum systems is not abso-
lute, but depends on the observables that are accessible
[19, 20]. This is due to the fact that an agent that has
access to a set of observables will define quantum systems
differently from an agent that has access to a different set
of observables. Where one agent sees a single system, an
agent that has access to less refined observables (and is
then limited by some superselection rules) can consider
the same system as composed of multiple subsystems.

It has been pointed out before that the quantum pos-
tulates are redundant: in [9, 25] it was shown that the
measurement postulate (b) can be derived from the oth-
ers (a), (c), (d). Here instead we have shown how the ten-
sor product postulate (c) can be logically derived from
the state postulate (a), the measurement postulate (b)
and a reasonable definition of independent systems, and
we have described the logical relations among them. Of
course, we do not claim that this is the only way to obtain
the tensor product postulate from the others.
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