
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Emergent Field-Driven Robot Swarm States
Gao Wang, Trung V. Phan, Shengkai Li, Michael Wombacher, Junle Qu, Yan Peng, Guo

Chen, Daniel I. Goldman, Simon A. Levin, Robert H. Austin, and Liyu Liu
Phys. Rev. Lett. 126, 108002 — Published 12 March 2021

DOI: 10.1103/PhysRevLett.126.108002

https://dx.doi.org/10.1103/PhysRevLett.126.108002


Emergent Field-Drive Robot Swarm States

Gao Wang,1, ∗ Trung V. Phan,2, ∗ Shengkai Li,3 Michael Wombacher,1 Junle Qu,4 Yan Peng,5

Guo Chen,1 Daniel I. Goldman,3 Simon A. Levin,6 Robert H. Austin,2, † and Liyu Liu1, ‡

1Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials,
College of Physics, Chongqing University, Chongqing, China
2Department of Physics, Princeton University, Princeton, NJ

3School of Physics, Georgia Institute of Technology, Atlanta, GA
4Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province,

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
5Research Institute of USV Engineering, Shanghai University, Shanghai, China

6Department of Environmental and Evolutionary Biology, Princeton University. Princeton NJ
(Dated: February 26, 2021)

We present an ecology-inspired form of active matter consisting of a robot swarm. Each robot
moves over a planar dynamic resource environment represented by a large light-emitting diode array
in search of maximum light intensity, the robots deplete (dim) locally by their presence the local
light intensity and seek maximum light intensity. Their movement is directed along the steepest
local light intensity gradient, we call this emergent symmetry breaking motion “field drive”. We
show there emerge dynamic and spatial transitions similar to gas, crystalline, liquid, glass and
jammed states as a function of robot density, resource consumption rates and resource recovery
rates. Paradoxically the non-gas states emerge from smooth, flat resource landscapes, not rough
ones, and each state can directly move to a glassy state if the resource recovery rate is slow enough,
at any robot density.

The field of active matter [1–5] seeks to attain a
fundamental understanding of collective properties that
emerge in an ensemble of driven agents [6–9]. We explore
here a unique form of active matter based on a combi-
nation of biological ecology [10] and robophysics [11, 12].
As autonomous robots become increasingly more adap-
tive, it is interesting to ask if adaptive robot swarms can
achieve complex/dynamic behavior [13, 14].We present
here a robot swarm that emulates natural collective en-
sembles in that they change their environment by their
very presence, and observe collective state changes as a
consequence of their ability to self-modify their environ-
ment and respond to that self-modification.

Two of the innovations that distinguish our biological
ecology based robot swarms from more conventional ac-
tive matter systems [15] is the dynamic resource land-
scape and how the robots self-modify the landscape.
They move over a 4.0 meter by 4.0 meter light-emitting
diode (LED) light board. Each robot has four down-
ward facing single pixel RGB sensors in the base, which
determine local light intensities and the gradient of the
resource (Fig. 1). The sensors are at opposing quadrants
on the base of the robot and detect corresponding intensi-
ties from a 2.5mm LED pitch. Positions of the robots are
observed by an overhead infrared CCD camera with res-
olution of 800x800 pixels. Each pixel of the camera sees
a single 2.5 mm LED element of the light board, thus
positions in this paper are given conveniently in terms of
pixel coordinates, and speeds are given in pixels/second.

Further, unlike conventional robots in a swarm, our
robots have no intrinsic motion. They move only in re-
sponse to a local self-generated light intensity gradient
∇I(x, y) at their positions on the light board. Gradients

FIG. 1. Robots and the interactive LED light board envi-
ronment. (a) Each robot has one micro-controller. A robot
base, of diameter of 65mm, has four RGB sensors for detec-
tion of light color from the LED light board. The movement
of each robot is controlled by two independent pulse-width
modulated gear motors. (b) The four RGB sensors are used
to co-detect gradient vectors from the underneath resource
landscape; (c) The LED light board of dimension 4.0m × 4.0m
and 2.5mm pitch supplies complex and dynamic environment
for the robot communities. (d) The rules and parameters that
control landscape resource and agents consumption property.

in the intensity emerge from depletion (dimming) of the
local intensity of the resource landscape by the robots.
Symmetry in the depletion hole of the local intensity
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FIG. 2. Robotic field-drive emergent motion. (a1)-(a2) Each
robot consumes (dims) the light in a Gaussian circle around
its position. (a3) Fluctuations give rise to transient intensity
gradients which spontaneously give rise to a random veloc-
ity direction (a4). (b) Self-drive of a robot over an initially
smooth resource field. (c) Each robot has a different response
to light gradients determined by variations in the motor and
drive train quality. Histogram of robot velocity distributions
for all robots when moving alone in a flat landscape, ordered
by their average kinetic energy, and some typical trajectories.

I(x, y) created by a stationary robot is spontaneously
broken by digitization errors in the intensity detectors.
This noise then bootstraps up an emergent field-drive
motion. Each pixel of the local resource field shadow
generated by the presence of a robot recovers with an ex-
ponential time constant τR once the robot moves away.
The smaller τR is, the quicker the local resource shadow
recovers. Fig. 2 describes this field-drive of the robots
and the decaying resource shadows they leave behind.

A swarm of many field-driven robots creates an emer-
gent complex resource field I(x, y; t) which can be ex-
tremely time and space dependent, and can be quite dif-
ficult to simulate in order to compute actual robot veloc-
ities [16]. The presence of many robots {j} at positions
{(xj , yj)} on the light board gives rise to a time depen-
dent 2D light intensity landscape I(x, y; t) across the light
board:

∂tI =
1

τR
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)
−
∑
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(x−xj)
2+(y−yj)

2

2σ2 Θ(I) (1)

where τR is the recovery time of a pixel intensity to the

robot-free intensity Ĩ, kE is the characteristic resource
consumption rate of a robot, σ is the radius of resource
consumption, and Θ(ζ) is a Heaviside unit-step function:

Θ(ζ > 0) = 1 , Θ(ζ ≤ 0) = 0 . (2)

A robot when in a position with a non-zero local re-
source gradient moves in response to the gradient ∇I,
usually towards higher resources with velocity ~vj :

~vj =
dxj
dt

x̂+
dyj
dt
ŷ = κ∇I(xj , yj ; t) , (3)

where x̂, ŷ are unit-vectors and κ is the robotic sensitivity
to the landscape’s local resource gradient. Computation
of the magnitude of the field-drive speed of an isolated
robot can be found in Supplementary Material Section
1. We also show in Supplementary Material Section 1.3
that in a sufficiently weak externally imposed gradient
because of the local digging of resource holes that it is
possible for a robot to move against a resource gradient,
in the “wrong” direction. We arrive at the estimation for
the maximum resource slope S a robot can move against:

max |S| ≈ 0.35
kE
U

(4)

where U = σ/τR. This backward motion towards lower
resources is critical for escape from local resource maxima
which become traps due to resource hole digging.

We created heterogeneity in the robot field drive sen-
sitivity to mimic biological heterogeneity. The N = 50
robots used in these experiments have different emergent
speeds because of variability in the mechanical construc-
tion, as we show in Fig. 2(c1) and 2(c2). This hetero-
geneity we view as an asset and not a bug: as in living
systems but typically not in engineered systems, hetero-
geneity is the rule and not the exception.

The simplest resource landscape is a circle of light of
radius R and a single resource color, namely ”white”
(IR = IG = IB). In order to study how the robot swarm
behavior changed with density we decreased the radius
R(t) linearly with time t:

R(t) = Ro(1− αt) (5)

In order to provide gradients at the circle perimeter the
perimeter is softened by a fixed Gaussian width σo � Ro.

The fundamental sign of the robot-robot field interac-
tion is negative (repulsive) due to resource competition
between two nearby robots as shown in Fig. 3(a1). At
relatively low robot densities the robots act like a gas
of self-avoiding objects of finite size [Fig. 3(a2)]. Fa-
miliar collective patterns emerge with increasing density,
such as phenomenon related to phase transitions in soft-
matter physics [1]. Fig. 3(b1)-3(d1) shows that as the
density increases, varieties of interaction modes emerge
among the localized robots, thus leading to crystal, liq-
uid and jammed states in sequence in overall community
[Fig. 3(b2)-3(d2)].
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FIG. 3. The basic robot spatial distribution and the re-
source landscape field dynamic as the light environment ra-
dius shrinks. Row (a1-e1) outlines how field drive results in
robot different localized states, and row (a2-e2) shows snap-
shots of robot positions in five different phases. Row (a3-e3)
shows the spatial Fourier transformation of the robot posi-
tions in row (a2-e2).

As the robot density increases, the resource landscape
gets smoother since the average local consumption rate
of resources increases with robot density, but the recov-
ery rate per pixel does not. Supplementary Movie 1
(smovie01) gives the video of 50 robots as the circle of
light shrinks. Fig. 3(a3)-3(e3) shows the density depen-
dent structure function S(kx, ky) [17] we get from spatial
Fourier transformation of robot positions as a function
of robot density.

Since we can track individual robots, it is possible to
quantitatively measure the position and velocity of each
robot during a compression process. We use two different

order parameters to characterize the emergent phases, ψ6

for spatial ordering and τ∗ for time ordering:
(1) ψ6: Since circles close-pack to a hexagonal array

[18], a natural order parameter to characterize the ini-
tial ordering of the robots with compression is the 6-fold
index ψ6 [19]:

ψ6 =

〈
1

Nj

∑
j′

ei6θjj′

〉
bulk

. (6)

The value ψ6j is the local bond-orientation order param-
eter, where the summation j′ runs over all Nj nearest
neighbor of robot j. θjj′ is the angle between the vector
connecting robots j to j′ and an arbitrary fixed refer-
ence axis. 〈·〉bulk denotes averaging over all robots ex-
cluding ones near the boundary of the environment. We
use Voronoi tessellation [20] to define the nearness to the
boundary.

FIG. 4. (a) Demonstration for ψ6 calculation. (b) Demon-
stration for χ4 calculation. (c) An example of characteristic
time τ∗ evaluated from the peak-position of χ4(τ, a).

(2) τ∗: The time-correlated spatial dynamics of the
robots, as distinct from their time-independent spatial
correlations ψ6, can be captured by both the histogram of
the robot kinetic energies 〈~v2j 〉 and the dynamic 4-point
susceptibility order parameter χ4 [21, 22]. χ4 is calcu-
lated by first determining the dynamical overlap function
Q(t, τ ; a):

Q(t, τ ; a) =
1

N

N∑
j=1

Θ
(
a− |~rj(t+ τ)− ~rj(t)|

)
, (7)

where the vector position of robot j at time t is given by

~rj(t) = xj(t)x̂+ yj(t)ŷ (8)

and a is a characteristic length which is usually chosen
as the radius of an agent [23]. The function χ4(τ ; a) is
then computed as the variance of Q(t, τ ; a) over the quasi
steady-state time interval:

χ4(τ ; a) = N Vart
(
Q(t, τ ; a)

)
(9)
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FIG. 5. (a) ψ6 as a function of robot density and resource recovery rate 1/τR. (b) Robot kinetic energy density ~v2j as a function
of robot density for a fixed resource recovery time of τR = 5 time-steps. (c) τ∗ as a function of robot density and resource
recovery rate 1/τR.

Fig. 4(c) shows the variance of Q(t,τ ,a), i.e. χ4, for an
experiment. τ∗, as shown in Fig. 4(c), can be intuitively
viewed as the mean trapping time of a robot around a
given position.

There are three parameters which control the robot
swarm field-drive matter states: the areal density of the
robots σ and the two field relaxation processes: the
shrinking rate of the light circle α in pixels/s and the
environmental recovery time τR in seconds, see Supple-
mentary Movie 2 (smovie02) and Movie 3 (smovie03). If
τR is set too slow and/or α is set too fast, the robots sim-
ply deplete (blacken) the resources and all motion freezes
out. This phenomena that we call void freezing is a new
form of a glass transition, showing in Fig. 3(e2). Re-
markably, even the gas state can directly transit to the
void glass state if τR is sufficiently slow, something that
does not occur in any other forms of active matter that
we are aware of.

With decreasing values of τR for a fixed α differ-
ent phases of the field-drive matter emerge, other robot
phases emerge. With increasing compression, the robots
first freeze into a hexagonal crystalline state, with high
ψ6, high τ∗ and lowered 〈~v2j 〉. Note that this crystalline
state is at relatively low robot densities and is not a jam-
ming transition [24] because the robots are not in contact
with each other, as is shown in the Supplementary Ma-
terial Section 4.

The transition from a gas to a crystal state, not seen
in inertially-driven systems [25], emerges since our robots
have no physical inertia but rather a field-driven motion.
By “no physical inertia”, we mean that field drive (gra-

dient searching of resources) gives the robots motility. In
the absence of a gradient, they do not and cannot move.
If we suddenly remove the gradient, the moving robots
immediately stop by the next time step iteration. In that
sense they have no physical inertial at all. More details
can be found in Supplementary Material Section 1 and
the Supplementary Movie 4 (smovie04).

Due to the decreasing resource landscape roughness
with increasing robot density, the crystalline state pres-
sure melts into a liquid state, with a decrease in ψ6, de-
crease in τ∗ and increase in 〈~v2j 〉. Melting from a crys-
talline to a liquid state, as explained in the Supplemen-
tary Material 2.1, requires robot escape from local re-
source minima due to their ability in the field-drive mech-
anism to move against a sufficiently weak resource gradi-
ent. Finally, the liquid state freezes in a jammed glass as
the robot field drive moves the robots into contact with
each other so that the state is incompressible, and the
field again becomes depleted (black). The jammed state
is however much different than the void glass freeze, the
void glass state is due to the robots falling out of steady-
state equilibrium. Fig. 5(a), 5(b) these results for the
spatial order parameter ψ6 and 5(c) presents the dynam-
ical order parameter χ4 mean value τ∗. Information on
〈~v2j 〉 with different τR and can be found in Supplemen-
tary Movie 5 (smovie05) and in Supplementary Material
Section 3.

Since this biologically inspired robot swarm active
matter does not have a well-defined temperature, it is
difficult to draw the usual phase diagram to show the
states. A plot of the states versus the ψ6 oriental order
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parameter and the susceptibility characteristic timescale
τ∗ [23]:

χ4(τ∗; a) = Maxτ
(
χ4(τ ; a)

)
(10)

is seen in Fig. 4(c).
Our robot field-drive and emergent states present a bi-

ologically inspired active matter. The robots remodel a
resource landscape and that remodeled landscape guides
the robots’ locomotion, even against resource gradients.
The field drive also generates a field-analog multi-body
interaction between the robots, as we discuss in the Sup-
plementary Material Section 2 [26, 27]. We view robots
as tools for a third way of modeling dynamical sys-
tems, complementing theoretical ideas, digital compu-
tation and now robophysical approaches. Thus robots
(and robophysics [11]) provides another way to develop
models of phenomena which can lead to insights in bio-
logical systems (locomotion, resource landscape utiliza-
tion) as well as systems to explore interesting dynamics
in physics (e.g. dynamical systems, active matter), and
engineers in principle can take the robophysics insights
and turn them into more interesting robots. Hopefully
with better control and understanding of the collective
robot responses, we will uncover potentially rich, robust
and surprising phenomena with possible connections to
biology, ecology and even sociology [28, 29].
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