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Abstract

We propose a novel approach to achieve giant AHE in materials with flat bands (FBs). FBs

are accompanied by small electronic bandwidths, which consequently increases the momentum

separation (K) within pair of Weyl points and thus the integrated Berry curvature. Starting

from a simple model with a single pair of Weyl nodes, we demonstrated the increase of K and

AHE by decreasing bandwidth. It is further expanded to a realistic pyrochlore lattice model with

characteristic double degenerated FBs, where we discovered a giant AHE while maximizing the

K with nearly vanishing band dispersion of FBs. We identify that such model system can be

realized and modulated through strain engineering in both pyrochlore and spinel compounds based

on first-principles calculations, validating our theoretical model and providing a feasible platform

for experimental exploration.
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Introduction The anomalous Hall effect (AHE), i.e., a zero field Hall conductivity ob-

served in ferromagnetic materials mediated by spin-orbit coupling (SOC), is one of the most

intriguing electronic transport phenomena [1]. It has been proposed for magnetic sensors

and memories for their high sensitivity and thermal stability [2–4] and energy efficient spin-

tronics applications [5–8]. There are two prevalent explanations, i.e., intrinsic AHE due to

SOC and extrinsic AHE due to impurity scattering [1, 9–13]. The theory of intrinsic AHE

was first put forth by Karplus and Luttinger [14], and subsequently better appreciated due

to Berry curvature of the occupied Bloch bands [11, 12, 15, 16]. More recently, with the

discovery of various topological states, Weyl semimetal (WSM) systems have been touted as

fertile ground for large AHE as Weyl points and their vicinity can host large Berry curva-

ture [17–20]. Large AHE has indeed been observed in several material candidates that have

been studied both theoretically and experimentally [21–23]. Several rule of thumb have

been suggested for achieving high AHE, however, there is no consensus on their general

applicability [22–24].

Theory has elaborated that the intrinsic peak anomalous Hall conductivity (AHC) in

WSMs with single pair of Weyl nodes is given by σxy = e2K
4π2 , where K is the momentum

separation between Weyl nodes [18]. To maximize AHE, an apparent approach would be to

increase K, which could be tuned through band engineering. In general material systems,

there are usually multiple pairs of Weyl nodes, which are located at different energy due

to the dispersing bands. Consequently, their corresponding AHC as a function of energies

usually shows multiple peaks and the Fermi level is rarely coincident with the AHC peak.

In this work, we show that the simultaneous harvesting of maximal Berry curvatures from

multiple pairs of Weyl points can be achieved through engineering of flat bands (FBs) [25–

27]. These FBs present limited electronic bandwidth where the Fermi level and peak AHC

coincides, and at the same time maximizes the Weyl points separation K.

FB systems would be ideal considering their intrinsic dispersionless bands. The pinning

of the Fermi level to the FB would also be easier to achieve due to its large density of states.

Strongly-correlated FB in low dimensions (1D or 2D) has been extensively studied, yield-

ing various exotic quantum states, e.g., ferromagnetism, superconductivity, and topological

states [25–32]. Recent studies have looked into 3D FB and various topological states [33–38].

However, there are no study of AHE in these systems, let alone the exploitation for optimal

AHE.
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Here, we first elaborate a general mechanism to increase K and thus AHC based on a

model study with a single pair of Weyl nodes. Thereafter, we propose that FB in 3D systems

can be a fertile ground for giant AHE where quasi double degenerate FBs can host multiple

pairs of Weyl nodes with optimized K. Finally, we examine the validity of this model in

pyrochlore and spinel compounds through DFT calculations, and demonstrate its tunability

through strain engineering. It is further applied to a more complicated magnetic WSM [21–

23], Co3Sn2S2, which shows a giant enhancement of AHE while lowering band dispersion.

WSM toy model We start from the cleanest scenario with one single pair of Weyl nodes

with the Hamiltonian given by [39, 40]

H = τz ⊗ [f(k) · σ] + τx ⊗ [g(k)σ0] + τ0 ⊗ [(β/2)σx], (1)

where f(k) = x̂tx sin(kxa) + ŷty sin(kya) + ẑtz sin(kza) and g(k) = tx[1 − cos(kxa)] + ty[1 −

cos(kya)] + tz[1− cos(kza)]; σ, a, and t are the Pauli matrices, lattice constant, and nearest

neighbor (NN) hopping parameter, respectively; β defines the exchange splitting strength.

Figure 1(a) displays a typical band structure with a pair of Weyl nodes located at k =

(±k0, 0, 0) with k0 = arccos[1 − β2/(8t2x)] [41]. In particular, the momentum separation

between the two Weyl nodes, K = 2k0, increases with the increase of β and/or the decrease

of the hopping parameter tx, as shown in Fig. 1(b).

The intrinsic AHC can be calculated by integrating Berry curvature of the occupied Block

states, as prescribed by the Kubo formula [12]:

Ωx
n(k) = −

∑
n′ 6=n

2Im[〈φnk | vy | φn′k〉〈φn′k | vz | φnk〉]
(εn′k − εnk)2

, (2)

σyz = −e
2

~

∫
BZ

d3k

(2π)3

∑
n

fnkΩx
n(k). (3)

To better understand how Berry curvature of Weyl pair contributes to the AHC, we show

the Berry curvature distribution, Ωx, at the kx− ky plane in Fig. 1(c). The Berry curvature

is mainly distributed in the vicinity of the Weyl nodes, and the linear scan shows that there

are non-compensating Berry curvatures that contribute to the AHC [inset of Fig. 1(c)[41]].

We explicitly calculate AHC based on Eq. (3) as a function of β for different tx values,

which agrees perfectly with the AHC calculated based on K using σxy = e2K
4π2 , as shown in
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FIG. 1. Band structure and anomalous Hall conductivity of generic WSMs. (a) Typical

band structure of a magnetic WSM derived from Eq. (1). We set an exchange field along the x

direction and the following parameters: β = 2 eV, tx = ty = tz = 1 eV and a = 1 Å . (b) Weyl

node separation as a function of tx for several β values. (c) Berry curvature (Ωx) distribution at

the kx− ky plane with inset showing linear scan along the dashed line. (d) Calculated AHC based

on Eq. (3) (symbols) and Weyl nodes separation (σxy = e2K
4π2 , solid curves) as a function of the

exchange splitting strength β for different tx values. The horizontal line highlights the maximum

value −2π for which σyz = e2/h.

Fig. 1(d). As anticipated, the AHC becomes larger with increasing K and could even reach

the quantum limit of e2/h when the system transition from WSM to Chern insulator state

with K = 2π/a [41]. The results suggests that smaller tx could enhance AHC, since smaller

tx implies larger K.

Pyrochlore lattice tight-binding model Beyond the toy model, we extend our study to

more realistic systems, where we can further verify the aforementioned mechanism and also

explore promising material candidates. From band structure perspective, smaller tx usually

leads to narrower bands. The extreme scenario would be the FB case. Distinct from trivial

FBs that are related to defect states [42, 43], here we will focus on nontrivial FBs system
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FIG. 2. Band structure of pyrochlore lattice. (a) Crystal structure of pyrochlore lattice with

four atoms (A-D) in one unit cell. t and t′ indicate the NN and NNN hoppings, respectively. (b)

High symmetry k-path in the first Brillouin zone. (c) Band structure of ideal pyrochlore lattice

without considering NNN interaction and SOC effect. (d) Band structure with NNN interaction t′

= 0.2t. The triple degenerate point (TP) and nodal lines (NL) are highlighted by red ellipses. (e)

Band structure considering SOC (λ = -0.2t) and broken TRS (λz = 5t) with different Weyl points

(WPs) highlighted.

due to destructive interference, e.g., in pyrochlore lattice [44, 45]. Pyrochlore lattice is a 3D

network of corner-sharing tetrahedron [Fig. 2(a)], which contains four atoms in each unit

cell. Considering one orbital on each atomic site and limit interactions to only the essential

NN (t) and next NN (NNN, t′) hoppings, the Hamiltonian can be written as:

H =
∑
iσ

εid
†
iσdiσ − t

∑
〈i,j〉σ

d†iσdjσ − t′
∑

〈〈i,j〉〉σ

d†iσdjσ +H.c., (4)

where εi represents the on-site energy at site i.

For the ideal case with zero t′ and uniform εi = 0 and t = 1, we get two degenerate FBs,

E1,2 = 2t and two dispersive bands, E3,4 = −2t(1±
√

1 + Ak), whereAk = cos(2kx)cos(2ky)+

cos(2kx)cos(2kz) + cos(2ky)cos(2kz). One of the dispersive bands touches the FBs at the Γ

point forming a triple degenerate point (TP) and two dispersive bands form nodal lines (NL)
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along X-W and its symmetry invariant k-paths [Fig. 2(b) and (c)]. After considering the

NNN hopping effect [41], the two FBs become dispersive and disperse upwards/downwards

for positive/negative t′. As shown in Fig. 2(c), the evolution of the band structure shows

the increase of bandwidth of FBs with increasing |t′| [41]. The degeneracy of the two FBs

is lifted, however, the TP and the NL feature remain robust [Fig. 2(d)]. [46]

To induce the magnetic WSM phase, we add a SOC (HSOC) and a Zeeman type exchange

splitting term (Hz) to our Hamiltonian: [37]

HSOC = iλ
∑

〈〈i,j〉〉αβ

(
−→
r1ij ×

−→
r2ij) · σαβs

†
iαsjβ, (5)

Hz = λz
∑
iα

d†iασzdjα, (6)

where λ and λz describe the SOC and the exchange splitting strength, respectively. With

only nonzero λ, the band structure shows that the TP at Γ point is splitted, and the NL

degeneracy is also lifted except the X point, leading to various topological states [41]. After

breaking the time reversal symmetry with nonzero λz, we achieve a magnetic WSM state, as

shown in Fig. 2(e). The formation of Weyl points (WPs) can be more intuitively understood

as the evolution of Dirac points (DPs) due to HSOC and Hz induced perturbation [48], which

lift DPs degeneracy and push flat band downward to cross the dispersive band, forming pairs

of Weyl nodes, e.g., the WPs(Γ1) along kz−Γ path arises from the DP at Γ point and similar

for WP(X) and WP(Γ2) that arise from DP at X and Γ, respectively [Fig. 2(e)] [41].

Anomalous Hall Effect With broken TRS in conjunction with SOC, various Weyl points

are created near the FBs that serve as hotspots for Berry curvature. We calculate the

intrinsic AHC (σxy) using Eq. (3). The upper branch of the band structure and AHC when

t′ = 0, λ = 0.2t, and λz = 5t is shown in Fig. 3(a). The lower branch is symmetric to the

upper branch, with the same AHC but opposite sign [41]. Clearly, there is a large peak right

at the energy of the FBs, where multiple pairs of Weyl nodes are residing. To understand

the correlation between flatness of FBs and the AHC, we study the evolution of AHC with

different band dispersion by tuning t′, as shown in Fig. 3(b). Evidently, with the increase

of t′, the bandwidth of the ‘FBs’ increases with a pronounced change in AHC. The single

AHC peak splits into three different peaks with a noticeable degradation in the maximum

AHC, as indicated by the arrows in Fig. 3(b).

By analyzing the evolution of band structure and AHC [Fig. 3(b)], we notice that the
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FIG. 3. Evolution of AHC with the change of NNN hopping strength t′. (a) Left and

right panel shows band structure and AHC of the pyrochlore model with zero t′. (b) Same as

(a) for evolution of the band structure and AHC with the change of NNN hopping strength t′,

respectively. AHC decreases with the increase of the band width due to the increase with the t′, as

indicated by the colored arrow.(c) Evolution of K for WP(Γ1) and WP(X) and their corresponding

AHC, PC,A with different t′. (d) Energy evolution of WP(Γ1, X, Γ2) and L point in comparison

with evolution of peaks PA,B,C and D1 with different t′.

energy of one of the splitted peaks, PA, is shifting to higher energies with increasing t′. Its

energy is always coincident with that of high-symmetry k-path X−W , which happens to be

highly energetically degenerate with almost zero dispersion. Another peak, PB, remains at

the same energy level that corresponds to the energy of L−Ky [dashed square in Fig. 3(b)],

where the two bands remain nearly flat with very small energy difference [41]. Similarly, we

find that the position of peak PC is coincident with the position of the crossing point between

bottom FB and upper Dirac band along Kz − Γ, shifting downward with the increasing t′.

We note that there is also a small dip (D1) between PB and PC , which also shifts to the

lower energy with increasing t′.
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To further validate the connection between the band dispersion and AHC, we calculate the

position of Weyl nodes and Berry curvature related to PA,B,C and D1. The crossing points

between upper Dirac and lower FB are well isolated from the other bands, corresponding

to an ideal magnetic WSM with one single pair of Weyl nodes [WP(Γ1) in Fig. 2(e)] [41].

As expected, the Berry curvature is mainly distributed around Weyl nodes that contribute

to PC [41]. The broadening of the PC is coincident with the energy gap at the Γ point,

indicating the contribution of Berry curvature near the Γ point, which is reasonable because

of the gap opening from Dirac state [41]. There exist another six pairs of Weyl nodes formed

by the two ‘FBs’, among which three pairs are located symmetrically around the kz axis

along six directions [41]. The Berry curvature of the (001) plane crossing the Γ point shows

large contributions from these Weyl points [41]. Possibly due to the type-II feature of these

Weyl fermions, [WP(Γ2) in Fig. 2(e)], it contributes negatively to the AHC (D1) [19]. The

other three pairs of Weyl nodes are near X and its symmetry-invariant k points [WP(X) in

Fig. 2(e)] [41]. Similarly, significant Berry curvature contributes to PA along X −W path

due to the very close energy between two FBs [41]. Interestingly, corresponding to the PB,

there are also large Berry curvature contributions from L and L − Ky path even without

existence of Weyl nodes [41].

To verify the linear relationship between momentum separation of Weyl pairs and AHC,

σxy = e2K
4π2 , we extract K in comparison with its AHC with changing t′, as shown in Fig. 3(c)

[41]. The evolution of WP(Γ1/X) show very good agreement with the change of AHC, PC/A.

The opposite sign in AHC for PC and PA is due to the opposite distribution of positive and

negative Weyl nodes. Because of the type-II feature of WP(Γ2) and the close distribution

between D1 and PB, such relationship is not applicable to WP(Γ2). We also plot the energy

evolution of those Weyl nodes and AHC peaks, as shown in Fig. 3(d). The perfect agreement

further verifies the contribution from each type of Weyl nodes to those AHC peaks. More

importantly, when t′ becomes smaller, energies of Weyl nodes for PA, PB and D1 get closer

to each other and that of L point, leading to the giant AHC observed for t′ = 0. This

suggest the superimposing of multiple pairs of Weyl nodes due to the FBs with small band

dispersion can indeed enhance the AHC.

With this tunable pyrochlore lattice model, we can also study the SOC (λ), exchange

splitting (λz), and structural effect (lattice constant a) on the AHE. It is generally believed

that large SOC is required to achieve large AHC [12, 15], which limits the searching of large
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AHE materials in heavy metals. Surprisingly, our results show that the SOC has limited

influence on the Weyl nodes separation and thus AHC [41]. Similar behavior is observed for

different exchange splitting strength [41]. In addition, we also studied the effect of lattice

constant, which shows smaller lattice will yield larger AHC [41]. This is consistent with

σxy = e2K
4π2 , where K depends inversely with the real space lattice constant.

Pyrochlore and spinel compounds and beyond Further, using DFT calculations [41], we

seek real materials within pyrochlore and spinel compounds [44, 45, 49, 50] that can be

described by our TB model, which should yield giant AHC. The crystal structure of the

α−pyrochlore (A2B2O7) and normal spinel compounds (AB2O4) are shown in Fig. 4(a) and

(b), respectively. With proper selection of A and B cations with suitable valence electrons, we

can realize the 3D FBs and the corresponding giant AHE. For the pyrochlore compounds, we

choose Nb2Sn2O7 as an example, which has been demonstrated to host the 3D FBs [36, 37].

However, the FBs are spin degenerated and located right below the Fermi level, which need

hole doping to partial fill the FBs and trigger the spin splitting. Because of the large density

of state and strong correlation effect, the band structure experiences a large spin splitting

with even a small amount of hole doping, as shown in Fig. 4(c) for the system with one

hole. The corresponding AHC is shown in Fig. 4(e), which indeed shows a large AHC peak

near the FBs right at the Fermi level. However, due to the large lattice constant and the

dispersive FBs, the peak value is not as large as the TB model. We also calculate Nb2Pb2O7,

which shows FBs with less dispersion and a corresponding enhancement of AHC [41, 47]. For

the spinel compounds [20, 49], we study the MgV2O4 that hosts 3D FBs in its ferromagnetic

state [38]. Due to orbital degeneracy, the band structure for MgV2O4 exhibits four FBs right

above the Fermi level with the bandwidth much narrower than that in pyrochlore compounds

[Fig. 4(d)]. Because of the higher degeneracy of FBs and their narrower bandwidth as well

as a smaller lattice constant, we observe a much larger AHC, as shown in Fig. 4(f). We also

calculate other spinel compounds that have similar band structure, which could all yield

giant AHC [41].

Considering that Weyl pairs can be pictured as crossing points between two bands, orig-

inating from the perturbation of singular Dirac point [48], the decrease of band dispersion

will always lead to increase of the Weyl pair separation K and thus the corresponding AHE

until the two bands are fully separated [41]. To further confirm the generality of our pro-

posal, we apply 4% tensile strain to decrease the hopping/band dispersion of two distinct
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FIG. 4. Giant AHE in pyrochlore and spinel compounds. (a) Crystal structure of the

pyrochlore compounds with the A cations forming the 3D kagome lattice. (b) Band structure of

hole doped Sn2Nb2O7. (c) DFT calculated AHC. (d) - (f) same as (a) - (c) for the spinel compounds

MgV2O4, where cations B form the 3D kagome lattice.

magnetic WSM systems, i.e., Nb2Sn2O7 and Co3Sn2S2 [21–23]. Remarkably, we observe

a giant increase (≈50%) of AHC for both Nb2Sn2O7 that fits into FB lattice model and

Co3Sn2S2 with much complicated Weyl distribution [41].

Discussion and perspectives It is generally believed that AHE is proportional to the

magnetization or strength of exchange splitting [1, 51]. Here, we demonstrate that the

microscopic hopping could be engineered to enhance the AHE by increasing K, i.e., reducing

the electronic bandwidth of Weyl-related bands. Also, large SOC is no longer a necessity to

achieve large AHE, it is possible to achieve giant AHE even in small SOC compounds, such

as Nb2Sn2O7. Considering the generality of the pyrochlore model and diversity of pyrochlore

and spinel compounds, we expect to greatly expand the number of material candidates with

giant AHE. We believe such phenomenon could also be generalized to other magnetic WSMs,

which deserves further studies.
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