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We study light-matter interactions in two dimensional photonic systems in the presence of a spa-
tially homogeneous synthetic magnetic field for light. Specifically, we consider one or more two-level
emitters located in the bulk region of the lattice, where for increasing magnetic field the photonic
modes change from extended plane waves to circulating Landau levels. This change has a drastic
effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian and chiral,
leading to the formation of strongly coupled Landau-photon polaritons. The peculiar dynamical and
spectral properties of these quasi-particles can be probed with state-of-the-art photonic lattices in
the optical and the microwave domain and may find various applications for the quantum simulation
of strongly interacting topological models.

The study of electronic systems in strong magnetic
fields has a long tradition in condensed matter physics
and led to many important discoveries such as the quan-
tum and the fractional quantum Hall effect or flux quan-
tization in superconducting rings [1, 2]. While for a long
time such effects have been restricted to charged parti-
cles, over the past years it has been shown that synthetic
magnetic fields can also be engineered for a variety of neu-
tral systems ranging from atoms in optical lattices [3, 4]
to photonic and phononic resonator arrays [5–7]. These
systems not only offer the possibility to simulate mag-
netic fields of unprecedented strength, but also allow us
to explore novel phenomena and applications, which are
not accessible with electrons. In particular, the ability to
interface photons and phonons with atoms or solid-state
emitters gives rise to many intriguing questions about the
nature of light-matter interactions in magnetic and other
topologically non-trivial environments [8–22].

In this Letter we study light-matter interactions in a
2D photonic lattice with an engineered synthetic mag-
netic field. Several previous works have already ad-
dressed the coupling of two-level systems to the chiral
edge modes [8, 15–17, 19], which can be used to transport
classical or quantum information in a robust and unidi-
rectional way [15, 17, 19, 23, 24]. Here we are interested
in emitters coupled to the bulk region of the photonic
lattice, where the presence of magnetic fields has dra-
matic consequences on the dynamics of the light emis-
sion process. Intuitively, this can be understood from
the fact that an emitted photon cannot propagate away,
but it is constrained to orbit around the emitter due to
the effective Lorentz force [25, 26]. More formally, the
formation of photonic Landau levels results in a highly
spiked density of states, such that even in an infinite
and broad-band lattice, emitter-field interactions become
intrinsically non-Markovian at all frequencies and cou-
pling strengths. We show that such peculiar conditions
lead to a novel kind of excitations that we name Landau-
photon polaritons (LPPs). By being composed of circu-
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FIG. 1. (a) Sketch of a system of two-level emitters coupled to
a photonic lattice with a synthetic magnetic fieldB. The mag-
netic field is implemented by adjusting the hopping phases φij
between neighbouring lattice sites such that around each pla-
quette

∑
� φij = 2πα. (b) The projected density of states,

ρ(~re, ω), is plotted on a logarithmic scale (arbitrary units) as
a function of α and for a lattice of M = 20 × 20 sites. For
this plot, ~re/l0 = (10, 10) and each resonance is represented
by a broadened δ-function with a finite width of γ/J ≈ 10−3.

lating [27] and dispersionless, but still spatially extended
photons, the spectral and dynamical features of these
quasi-particles can be continuously tuned from a single-
mode, cavity QED type behavior to that of a many-body
system of strongly interacting particles in the presence
of a magnetic field. For intermediate parameter settings
the hybridization of chiral photons and highly non-linear
emitters results in a whole zoo of interacting magnetic
lattice models, which are unprecedented in other light-
matter or condensed-matter systems. This makes such
systems particularly interesting for quantum simulation
applications.
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Model.—We consider a setup as shown in Fig. 1(a),
where N (artificial) two-level emitters with frequency ωe
are coupled to a 2D photonic resonator array of length
L, lattice positions ~ri = (xi, yi) and spacing l0. Each
lattice site is represented by a localized photonic mode
with frequency ωp and annihilation operator Ψi ≡ Ψ(~ri).
Neighboring lattice sites are coupled via the complex tun-
neling amplitudes Jij = Jeiφij . The photonic lattice is
modelled by the tight-binding Hamiltonian (~ = 1)

Hph = ωp

M∑
i=1

Ψ†iΨi − J
∑
〈i,j〉

(
eiφijΨ†iΨj + H.c.

)
, (1)

where M = (L/l0)2 is the total number of lattice sites.
The Hamiltonian for the combined system is

H = Hph +

N∑
n=1

ωe
2
σnz + g

[
Ψ(~r ne )σn+ + Ψ†(~r ne )σn−

]
, (2)

where the σnk are the Pauli operators for an emitter at
site ~r ne and g is the emitter-field coupling strength.

A magnetic photonic lattice.—We are interested in the
regime N �M , where a few emitters are coupled to the
bulk region of a much larger photonic lattice. In a stan-
dard lattice, where φij = 0, Hph can be diagonalised by
introducing the annihilation operators Ψλ =

∑
i f
∗
λ(i)Ψi,

where the mode functions fλ(i) ∼ ei
~kλ·~ri are plane

waves and the corresponding mode frequencies ωλ form
a continuous band of width 8J centred around ωp [see
Fig. 1(b)]. For ωe within this band and g � J , an ex-
cited emitter coupled to this continuum of modes simply
undergoes an exponential decay.

Here we consider a lattice where φij = e
~
∫ ~ri
~rj

~A(~r) · d~r,
with ~A(~r) = B(−y/2, x/2, 0). This arrangement of
phases mimics the lattice Hamiltonian for particles with
charge e in a homogeneous magnetic field B and thus
represents an equivalent synthetic magnetic field for the
photons. Such a scenario can be realized, for example,
by imposing the tunneling phases through external driv-
ing fields [7, 28, 29], by engineering multi-mode lattices
with effective spin-orbit interactions [10, 24, 30, 31] or
by weakly hybridizing photons with magnetic materi-
als [11, 32] to break time-reversal symmetry. See Ref. [5]
for a more detailed discussion of those experimental tech-
niques.

In Fig. 1(b) we plot the projected density of states,
ρ(~re, ω) =

∑
λ |fλ(~re)|2δ(ω − ωλ), as a function of α =

eΦ/(2π~), where Φ = Bl20 is the flux enclosed in a single
plaquette. This quantity captures the relevant photonic
modes to which an emitter located at ~re is coupled to.
We identify three different regimes. For very small α
the magnetic length lB ' l0/(

√
2πα) exceeds the size of

the lattice, L. Magnetic effects are not yet important
and ρ(~re, ω) recovers the relatively flat shape of a trivial
lattice. In the opposite strong-field regime, lB . l0, the
magnetic length is comparable to the lattice spacing and

ρ(~re, ω) reproduces the fractal structure of the Hofstadter
butterfly [33].

Most relevant for the current discussion is the interme-
diate regime, where l0 < lB < L. In this parameter range
the discreteness of the lattice is not important and we can
use an effective continuum theory, where the eigenmodes
fλ(i) ≡ Φ`k(~ri) are the usual Landau orbitals [25, 34],

Φ`k(~ri) '
l0√
2πlB

√
`!

k!
ξk−`i e−

|ξi|
2

2 Lk−``

(
|ξi|2

)
(3)

with ξi = (xi + iyi)/
√

2l2B and Lk−`` (x) are general-
ized Laguerre polynomials. The index ` = 0, 1, 2, . . .
labels the discrete Landau levels with frequencies ω` ≈
ωb+ωc(`+1/2) [34], where ωb = ωp−4J is the frequency
of the lower band edge and ωc = 4παJ is the cyclotron
frequency. The second index k = 0, 1, 2 . . . labels the
∼ αM degenerate modes within each band. Clearly, both
the transformation from a continuous to a discrete spec-
trum and the localization of the photonic eigenmodes will
strongly affect the physics of light-matter interactions in
such a synthetic magnetic environment.

Single-emitter dynamics.—We first consider the case
of a single emitter located at position ~re in the bulk of
the lattice. The emitter is initially prepared in its ex-
cited state and the system’s wavefunction can be written
as |ψ〉(t) = e−iωet[ce(t)σ+ +

∑
i ϕ(~ri, t)Ψ

†(~ri)]|g〉|vac〉,
where ce(t) is the emitter amplitude and ϕ(~ri, t) the pho-
ton wavefunction. From this ansatz we obtain

ċe(t) = −g2

∫ t

0

dsG(t− s, ~re, ~re)ce(s)eiωe(t−s), (4)

where G(τ, ~ri, ~rj) = 〈vac|Ψ(~ri, τ)Ψ†(~rj , 0)|vac〉 =∑
λ fλ(~ri)f

∗
λ(~rj)e

−iωλτ is the photonic Green’s function.
In Fig. 2(a) we show the evolution of the excited-state

population, pe(t) = |ce(t)|2, for different α and different
detunings from the band edge, δe = ωe − ωb. For α = 0
and M → ∞ the Green’s function G(τ, ~re, ~re) is repre-
sented by a mode continuum and decays on a short time
scale, J−1. It is then valid to make a Markov approxima-
tion and, consistent with a numerical simulation of the
full wavefunction |ψ〉(t), we obtain an exponential decay
of pe(t) with a rate Γ ' 2πg2ρ(~re, ωe) ≈ g2/(2J) [34]. For
α 6= 0 the situation is very different and depending on
ωe we observe either no decay at all or coherent oscilla-
tions. This behaviour can be understood from the exact
spectrum of Hph plotted in Fig. 2(b). It exhibits discrete
plateaus at frequencies ω` connected by a sparse set of
intermediate modes representing the edge states. Since
an emitter in the bulk does not see the edges, whenever
|ωe − ω`| & g there are no available modes to couple to
and the emitter remains frozen in the excited state.

The situation is very different when ωe ' ω`, in which
case the emitter couples to a flat band without dispersion.
We can then project the Green’s function on the resonant
Landau level and obtain G(τ, ~ri, ~rj) ' G`(~ri, ~rj)e

−iω`τ ,
where

G`(~ri, ~rj) '
√
αeiθijΦ``(~ri − ~rj) (5)
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FIG. 2. (a) Evolution of the excited-state population, pe(t),
of an emitter located at ~re/l0 = (25, 25) in a lattice of 50 ×
50 sites. The parameters are α = 0 and δe/J = 1.35 (blue
line), α = 0.08 and δe/J = 1.35 (orange line), and α = 0.08
and δe/J = 1.76 (green dashed line). (b) Plot of the lowest
eigenfrequencies ωλ of the two photonic lattices as used for
the simulation shown in blue and orange in (a). The dashed
black lines indicate the corresponding emitter’s frequencies.
(c) Photon density, |ϕ(~ri, tπ)|2, combined with the profile of

the photon current, 〈~jp〉(~ri, tπ), at time tπ = π/(2Ω), for α =
0.08 and ωe = ω`=0,1,2. For all plots g/J = 0.14 and for each
lattice site in the bulk (on the edge) a photon decay rate of
γp/J = 4× 10−4 (γedge/J ∼ 10−1) has been introduced [34].

and θij = −(xiyj − xjyi)/(2l2B) [34]. Under this approx-
imation, Eq. (4) can be converted into a second-order
differential equation, c̈e = −Ω2ce. Here

Ω =
√
αg (6)

is the vacuum Rabi frequency, which has the same value
for all Landau levels. The predicted Rabi oscillations,
pe(t) = cos2(Ωt), are exactly reproduced by the full nu-
merical simulation, keeping in mind that in Fig. 2(a) we
have included a finite loss rate γp for all photons to de-
scribe a realistic scenario. For the photon wavefunction
we obtain

ϕ(~ri, t) = −i sin(Ωt)√
α

G`(~ri, ~re), (7)

i.e., at time tπ = π/(2Ω) the excitation is fully con-
verted into a circulating photon in the Landau orbital
∼ Φ``(~ri − ~re), centered around the emitter. This is
shown in Fig. 2(c) in terms of the density, |ϕ(~ri, tπ)|2, and

the photon-current profile, 〈~jp〉(~ri, tπ) [34]. Note that all

these results are independent of the gauge for ~A and the
chosen Landau basis in Eq. (3), which depends explic-
itly on the origin of the coordinate system. However,
G`(~ri, ~rj) still includes a gauge-dependent phase factor,
θij , which will become important in the following.

Landau-photon polaritons.—Let us now extend these
results to multiple emitters, still focusing on the regime

ωc � g, where the emitters couple dominantly to a single
Landau level. In this case each emitter only interacts
with photons in the orbital centered around its location,
Φ``(~ri − ~r ne ). The photons themselves do not evolve,
because there is no dispersion. These special conditions
allow us to restrict the dynamics of the whole lattice to
a reduced set of modes with bosonic operators

B`n =

N∑
m=1

(K−1)nm
∑
i

G`(~r
m
e , ~ri)Ψ(~ri). (8)

Here, the N × N matrix K satisfies (KK†)nm =
G`(~r

n
e , ~r

m
e ) [34], which ensures that the B`n form an or-

thogonal set of modes with [B`n, B
†
`m] = δnm. Projected

onto these modified Landau orbitals, we obtain the effec-
tive Hamiltonian

H
(`)
LPP =ω`

N∑
n=1

B†`nB`n +
ωe
2

N∑
n=1

σnz

+g

N∑
n,m=1

(
σn+KnmB`m +B†`mK

∗
nmσ

n
−

)
.

(9)

It describes the full nonlinear dynamics of LPPs, which
are the quasi-particles formed by the coupling of two-
level emitters to photons in a single Landau level. This
model generalizes the dressed emitter-emitter interac-
tions introduced in [44] and holds even in the pres-
ence of a finite bandwidth J` or local frequency disor-
der ∆ωp [45], as long as ωc � g � J`,∆ωp [34]. Im-

portantly, H
(`)
LPP only involves N independent photonic

modes, i.e., considerably fewer than the number of lat-
tice sites. This makes few-excitation physics numerically
tractable, which usually is not possible in 2D waveguide
QED systems. In Fig. 3(a) we show the single- and two-

excitation spectrum of H
(`=1)
LPP for N = 3 equally spaced

emitters with |~r ne − ~rme | = d and assuming resonance
conditions, ωe = ω`=1.

For a single excitation we obtain an upper and a lower
polariton branch, which split into subbands of frequencies

ω±`,ν = ωe ± Ω

√
1 + e

− d2

4l2
B L0

`

(
d2

2l2B

)
λν , (10)

where λν=1,2,3 = 2 cos[(θ4 + 2πν)/3] and θ4 = θ12 +
θ23 + θ31 = eBA4/~ is the normalized flux through the
area A4 enclosed by the three emitters. For widely sep-
arated emitters, each emitter supports an independent
pair of upper/lower polariton states with the same Rabi
splitting 2Ω. When the spacing d between emitters is
reduced, the photonic wavefunctions start to overlap and
each polariton manifold splits into three branches, similar
to the formation of binding and anti-binding orbitals in
molecules. The dependence on both the enclosed flux as
well as on the shape of the Laguerre polynomials quanti-
fying the wavefunction overlap make the spectra of LPPs
rather complex. The λν reflect the characteristic eigen-
value structure of a three-site lattice in a magnetic field
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FIG. 3. (a) The spectrum of H
(`)
LPP in the single- and two-

excitation sector for N = 3 equidistant emitters with vary-
ing spacing d and for ` = 1 and ωe = ω1. (b) Zoom of
the lower polaritonic band of the emitter’s excitation spec-
trum, Sne (ω), for a N = 4× 4 square lattice of emitters with
open boundaries, where ~r ne is the location one of the four in-
ner emitters (the full spectrum is reflection symmetric around
ωe). For this plot, α = 0.08, γe/Ω = 0.02 and ` = 3. The
color scale is normalised to the maximum value. (c) Plot of
the two-photon correlation function C(~ri, ~r

1
e ) for the different

two-photon eigenstates indicated in (a). The green crosses
represent the emitters position, and the red circle marks the
reference emitter’s position ~r 1

e .

and the symmetry between the upper and lower polari-
tons is a consequence of the resonant coupling of the
emitters to a single and degenerate Landau level. For
any θ∆ 6= nπ, the left- and right-circulating polariton
modes are no longer degenerate, which indicates chiral-
ity of LPP propagation [32].

The physics is even richer in large lattices, as exempli-
fied in Fig. 3(b) for a square lattice of N = 4×4 emitters.
This plot shows the lower part of the emitter’s excitation
spectrum,

Sne (ω) =

∣∣∣∣〈G|σn− 1

H − ω − iγe2
∑
m σ

m
+ σ

m
−
σn+|G〉

∣∣∣∣2 , (11)

where |G〉 is the ground state and γe is the bare decay rate
of the emitters. The repetitive features in this spectrum
can be understood in terms of a Harper-Hofstadter model
with a flux ∼ d2/l2B per plaquette. This spectrum can
be directly obtained by detecting the light scattered from
one weakly driven emitter.

Let us move to the multiple excitation case. It is
well-known that in a single-mode system, the Jaynes-
Cummings interaction gives rise to an effective repul-
sion, U = Ω(2 −

√
2), between two polaritons. This

interaction can also be clearly identified in Fig. 3(a),
where at large distance d the lowest three eigen-
states in the two-excitation sector are separated by

U from the next three levels. The difference be-
tween these two sets of polaritonic states can be visu-
alized in terms of the two-photon correlation function,
C(~ri, ~rj) = 〈Ψ†(~rj)Ψ†(~ri)Ψ(~ri)Ψ(~rj)〉/〈Ψ†(~rj)Ψ(~rj)〉,
plotted in Fig. 3(c). For d � lB , the energetically low-
est states exhibit strong anti-bunching, C(~ri, ~rj) ' 0 for
|~ri − ~rj | . lB , reminiscent of a Laughlin wavefunction,
where particles avoid each other. For the interacting
states we obtain C(~r ne , ~r

m
e ) ' 0 for n 6= m, meaning

that both photons occupy the same orbital. At smaller
distances, the kinetic energy, i.e., the overlap between
orbital states becomes more relevant and anti-bunching
gradually disappears with details depending on the en-
closed magnetic flux, θ4. For d ≤ lB , the emitters couple
identically to the field, such that the interactions become
fully collective and the spectrum converges to that of a
single-mode Tavis-Cummings model [46].

Chiral dipole-dipole interactions and effective flat-band
models.—The situation is most transparent and intrigu-
ing when the emitters are sufficiently detuned from the
nearest Landau level, |ωe − ω`| � g. In this case they
are only weakly dressed by the photons, which gives
rise to effective dipole-dipole interactions of the form

Heff =
∑
n,m

(
J̃nmσ

n
+σ

m
− + H.c.

)
. Here

J̃nm '
g2

ωe − ω`
|G`(~r ne , ~rme )|eiθnm , (12)

are complex hopping amplitudes, which inherit the mag-
netic features from the photons. Therefore, also in this
almost decoupled limit, dipole-dipole interactions be-
tween N ≥ 3 emitters depend sensitively on the magnetic
flux, which can lead to a fully chiral transport of excita-
tions. As illustrated in Fig. 4(a), a single excitation flows
in the clockwise direction, while two excitations lead to
an anti-clockwise dynamics for their relative hole [29].

More generally, the effective Hamiltonian Heff can be
viewed as a magnetic lattice model for hard-core bosons,
with various additional interesting features. Analogously
to Fig. 3, the magnetic flux associated with the phases
θij depends on the emitter’s arrangement and can be con-
siderably enhanced, i.e., αeff = α(d/l0)2 for a square lat-
tice. Further, tunneling is no longer constrained to near-
est neighbors and depending on the spacing, the lattice
geometry and the Landau-level index `, a whole zoo of
magnetic models with different band-structures and field
strengths can be realized. For example, in Fig. 4(b) we
show the single-excitation spectrum of Heff for a square
lattice of emitters for two different spacings, but equiv-
alent effective field strengths. In the first case, only
nearest-neighbor couplings are relevant and we recover
the regular Hofstadter butterfly with αeff ≈ 2.32 (which
is equivalent to αeff ≈ 0.32). In the second example,
long-range hoppings are important and the spectrum of
the bulk modes becomes essentially flat. This situation is
reminiscent of the spectrum of the Kapit-Muller Hamilto-
nian [47], a prototype toy model for strongly interacting
magnetic systems. Interestingly, such abstract models
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FIG. 4. (a) Evolution of the excited state populations pne (t)
of N = 3 emitters arranged in a triangle of length d/l0 = 4.
For this plot ` = 0, and α = 1/(16

√
3) ≈ 0.036, such that

the enclosed effective flux is θ4 ' π/2 and the dipole-dipole
interactions become fully chiral (see [34] for details). In the
upper panel the initial state contains two excitations in emit-
ter 1 and 2. In the lower panel the initial state contains just
one excitation in emitter 1. (b) Single-excitation spectrum of
Heff for a square lattice of 20 × 20 emitters and normalized
to the nearest-neighbor coupling strength J̃ = |J̃12|. The two
spectra are obtained for the spacings d/l0 = 2 (αeff = 0.32)
and d/l0 = 5.39 (αeff = 2.32) and in both cases α = 0.08 and
` = 0 has been assumed.

arise very naturally from the coupling of emitters to a
magnetic photonic reservoir.

We emphasize that the strong coupling of supercon-
ducting qubits to arrays of microwave resonators in the
regime g � γe, γp [9, 20, 48] as well as the imple-
mentation of synthetic fields in small [29] and large
two-dimensional [12] photonic lattices have already been
demonstrated. A combination of these techniques is suf-
ficient to probe all the characteristic properties of LPPs
with state-of-the-art parameters [34]. With further de-

velopments, similar experiments should also become pos-
sible with atoms or solid-state emitters coupled to topo-
logical lattices in the optical regime [23, 30, 49, 50].

Conclusions.—In summary, we have shown how the
presence of synthetic magnetic fields changes the physics
of light-matter interactions in the bulk of 2D photonic
lattices. For moderate magnetic fields this physics can be
very accurately described in terms of LPPs, which share
the nonlinearity of the matter component and the chiral
properties of Landau photons. In the many emitter case,
our platform naturally allows the quantum simulation of
various interaction-dominated topological systems, which
do not appear in electronic systems with only nearest-
neighbor interactions.
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