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Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state
order in highly excited eigenstates. The interplay between localization, symmetry, and topology
has led to the characterization of a broad landscape of MBL phases ranging from spin glasses and
time crystals to symmetry protected topological phases. Understanding the nature of phase tran-
sitions between these different forms of eigenstate order remains an essential open question. Here,
we conjecture that no direct transition between distinct MBL orders can occur in one dimension;
rather, an ergodic phase always intervenes. Motivated by recent advances in Rydberg-atom-based
quantum simulation, we propose an experimental protocol where the intervening ergodic phase can

be diagnosed via the dynamics of local observables.

Traditionally, the classification of phases of matter
has focused on systems at or near thermal equilibrium.
Many-body localization (MBL) offers an alternative to
this paradigm [IH6]. In particular, owing to the presence
of strong disorder, MBL phases are characterized by their
failure to thermalize [7HI0]. This dynamical property im-
poses strong constraints on the structure of eigenstates;
namely, that they exhibit area-law entanglement and can
be described as the ground state of quasi-local Hamilto-
nians [I1, 12]. Perhaps the most striking consequence
is that such systems can exhibit order — previously re-
stricted to the ground state — throughout their entire
many-body spectrum [I2HI7]. This offers a particularly
tantalizing prospect for near-term quantum simulators:
The ability to observe phenomena, such as coherent topo-
logical edge modes, without the need to cool to the many-
body ground state [I8H22].

The presence of eigenstate order in the many-body lo-
calized phase also raises a more fundamental question:
What is the nature of phase transitions between different
types of MBL order? This question highlights a delicate
balance between the properties of localization and phase
transitions. On the one hand, the stability of MBL is
contingent upon the existence of an extensive number of
quasi-local conserved quantities (“¢-bits”) [IT], 23]. On
the other hand, the correlation length at a second-order
phase transition diverges [24]. Understanding and char-
acterizing this interplay remains an outstanding chal-
lenge. Indeed, while certain studies suggest the pres-
ence of a direct transition between distinct MBL phases
[16] 20, 25H28], others have found signatures of delocal-
ization at the transition [29H3T].

In this Letter, we conjecture that any transition
between distinct MBL phases is invariably forbidden
and that an intervening ergodic phase always emerges
(Fig. ) This conjecture is motivated by an extensive
numerical study of three classes of MBL transitions: (i) a
symmetry-breaking transition, (ii) a symmetry-protected
topological (SPT) transition, and (iii) a discrete time
crystalline transition (in a Floquet system). By sys-
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FIG. 1. (a) Phase diagram of the symmetry breaking model,
Eqn. |1} as a function of W; /W), and interaction strength Wy .
For all numerically accessible Wy (outside the shaded region),
we observe a finite width ergodic region between the two dif-
ferent MBL phases (PM and SG). At Wy = 0, the system is
non-interacting and exhibits a critical point at W;/W;, = 1
(red point). (b) Phase diagram as a function of a symmetry
breaking field I" and W /W}, for Wy = 0.3. With increasing
T", the size of the ergodic region decreases until the system
remain localized for all W;/W},. (inset) Schematic of the full
phase diagram as a function of W; /W, Wy and T'.

tematically constructing the various phase diagrams, we
show that an intervening ergodic region emerges for all
numerically-accessible interaction strengths. Moreover,
we demonstrate that this emergent ergodicity is inti-
mately tied to the presence of a phase transition; a
disorder-less, symmetry-breaking field suppresses the in-
tervening ergodic phase. In addition to numerics, we
analyze two instabilities which could induce thermaliza-
tion near the putative transition: (i) the proliferation of
two-body resonances [2], 82 B3] and (ii) the run-away of
avalanches [34] [35]. We find that the latter is marginal.
Finally, we propose and analyze an experimental plat-
form capable of directly exploring the emergence of er-
godicity at the transition between MBL phases. Our
proposal is motivated by recent advances in Rydberg-
dressed, neutral-atom quantum simulators [36H43]; we
demonstrate that the phase diagram depicted in Fig. []
can be directly probed via quench dynamics of local ob-
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FIG. 2.

(a-d) Characterization of the symmetry breaking model, Eqn. [1} for Wy = 0.7. (a) For W; /W), = 10, x increases

with system size evincing the SG nature of the phase. In the PM phase, x approaches a finite constant, albeit exhibiting
two distinct behaviors (inset). (b) (r)-ratio as a function of W;/Wj, reveals an intervening ergodic phase surrounded by two
localized phases. The dash-dotted [dashed] line corresponds to the GOE [Poisson| expectation. (c¢) The half-chain entanglement
entropy Sy, /2 increases with system size for intermediate W; /W), in agreement with the expected thermal volume-law. In the
two localized phases, Sy, /o saturates to different values, highlighting the distinct nature of the underlying eigenstate order. (d)
The variance of Sy, exhibits two distinct peaks in agreement with the presence of two distinct transitions. (e)[(f)] S /2 for

the SPT [DTC] model of Eqn. |2| [Eqn.

servables within experimental decoherence time-scales.

Let us start by considering the paradigmatic example
of a disordered one dimensional spin chain, which hosts
two distinct MBL phases:

H = ZJiJiZUerl + Zhiof + ZVi(UfUzﬁl + Uz'ZJiZJrz)v
K2 (2 1 (1>

where ¢ are Pauli operators and all coupling strengths
are disordered, with J; € [-W;, W], h; € [-W},, W4],
and V; € [-Wy, Wy [44]. We choose to work with the
normalization W ;W = 1 and perform extensive ex-
act diagonalization studies up to system size L = 16
[45]. In the absence of V;, the system reduces to the non-
interacting, Anderson localized limit and for sufficiently
strong disorder (in J; and h;), this localization persists
in the presence of interactions.

The Hamiltonian (Eqn. 1) exhibits a Zy symmetry cor-
responding to a global spin-flip, G = [], 7. In the many-
body localized regime, two distinct forms of eigenstate
order emerge with respect to the breaking of this symme-
try. For Wy, > W; Wy, the transverse field dominates
and the system is in the MBL paramagnetic (PM) phase.
The conserved /¢-bits simply correspond to dressed ver-
sions of the physical of operators. For W; > W;, Wy,
the Ising interaction dominates and the eigenstates cor-

also demonstrates the presence of an intervening ergodic phase. Each data point
corresponds to averaging over at least 10° disorder realizations.

respond to “cat states” of spin configurations in the 2
direction. Physical states break the associated Zo sym-
metry, the (-bits are dressed versions of 0707, |, and the
system is in the so-called MBL spin-glass (SG) phase
13, [16].

These two types of eigenstate order can be dis-
tinguished via the Edwards-Anderson order parameter
which probes the presence of long-range Ising correla-
tions in eigenstates |n), x = <<L*1 >ij(nloios |n)2>>,
where (- --) denotes averaging over disorder realizations
[16, 28]. In the SG phase, this order parameter scales ex-
tensively with system size, x o« L, while in the PM phase,
it approaches a constant O(1) value. Fixing Wy = 0.7,
x exhibits a clear transition from PM to SG as one tunes
the ratio of W;/W}, (Fig. 2a). The finite-size flow of x is
consistent with the presence of a single critical point at
Wy =32,W, =032 (W;/W, =~ 10).

However, thermalization diagnostics tell a different
story. In particular, we compute the (r)-ratio, a mea-
sure of the rigidity of the many-body spectrum: (r) =
(min{dy,, dpt1}/max{d,, 6ni1}), where §, = E,1— E,,
E, is the n'" eigenenergy and averaging is also done
across the entire many-body spectrum [46], [47]. In the
MBL phase, energy levels exhibit Poisson statistics with
(r) = 0.39, while in the ergodic phase, level repulsion
leads to the GOE expectation (r) ~ 0.53 [ [6] §]. Un-



like x, which exhibits a single transition, the (r)-ratio
exhibits two distinct critical points, each characterized
by its own finite-size flow (Fig. 2p). This demarcates
three distinct phases: two many-body localized phases
(for Wy /W, < 0.1 and W; /W), 2 10) separated by an
intervening ergodic phase. Interestingly, the location of
the ergodic-MBL transition at W;/Wj, & 10 matches
the location of the spin-glass transition observed via .
The fact that an additional ergodic-MBL transition is
observed in the (r)-ratio, but not in y, suggests that the
PM regime has slightly more structure.

In order to further probe this structure, we turn to the
half-chain entanglement entropy, Sz /2 = —Tr[ps log(ps)],
where p; = Tri<p 2[|n) (n]] [6, 11, 16, 48-55]. The
behavior of Sp, /9, illustrated in Fig. @:, allows us to
clearly distinguish three phases: the MBL paramagnet,
the ergodic paramagnet, and the MBL spin-glass. For
Wy /Wy, < 0.1, the eigenstates are close to product
states and the entanglement entropy Sp/; is indepen-
dent of L, consistent with a localized paramagnet. Near
Wy /Wy = 1, S,/ increases with system size, approach-
ing (Llog2—1)/2, consistent with an ergodic paramagnet
[56]. Finally, for W, /W), > 10, the half-chain entangle-
ment again becomes independent of L and, for very large
W /Wy, approaches log 2, consistent with the cat-state-
nature of eigenstates in the MBL SG phase.

A few remarks are in order. First, the variance of
S1./2 across the ensemble of disorder realizations provides
a complementary diagnostic to confirm the presence of
two distinct ergodic-MBL transitions (Fig. [2d) [16} 49-
59]. Indeed, one observes two well-separated peaks in
var(Sy /), whose locations are consistent with the tran-
sitions found in the (r)-ratio. Second, although x only
scales with system size in the SG phase, one expects its
behavior to be qualitatively different in the MBL versus
ergodic paramagnet. In particular, in the MBL param-
agnet, the £-bits have a small overlap with o7c7 and one
expects x > 1; meanwhile, in the ergodic paramagnet, for
a state chosen at the center of the many-body spectrum,
one expects that y — 1 rapidly with increasing system
size (owing to the eigenstate thermalization hypothesis)
[8, 67H59]. This is indeed borne out by the numerics, as
shown in the inset of Fig. 2h.

Diagnostics in hand, we now construct the full phase
diagram as a function of Wy and W, /W, (Fig. [Th).
Even for the smallest interaction strengths accessible
Wy ~ 0.07 (i.e. where the minimum interaction coupling
remains larger than the mean level spacing) one observes
a finite width region where the (r)-ratio increases with
system size [45] 48], [60HG3].

To verify that the presence of a phase transition is
indeed responsible for the intervening ergodic region,
one can explicitly break the Zs symmetry in Eqn. [I}
We do so by adding a disorder-less, on-site longitudi-
nal field, I' Y, o7. Despite the fact that the field is uni-
form, it causes the (r)-ratio to systematically decrease
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FIG. 3. (a) (r)-ratio as a function of W;/W; at Wy =
0.3 in the presence of an explicit symmetry breaking field
I' = 2. The dash-dotted [dashed] line corresponds to the
GOE [Poisson] expectation. Unlike the symmetry respect-
ing case (I' = 0, inset), the system remains localized for all
values of W;/Wp,. (b) Within the ergodic region (here with
Wy /Wi = 1), an increasing symmetry-breaking field drives
the system towards localization. Each data point corresponds
to averaging over at least 3 - 102 disorder realizations.

(Figs. 7b), and for a sufficiently large symmetry break-
ing field, all finite-size flow tends toward localization.
This allows us to construct the phase diagram in the
presence of finite T, as depicted in Fig. [Ip.

To understand the generality of an emergent ergodic
region between many-body localized phases, we now
consider two additional types of MBL transitions: a
symmetry-protected topological (SPT) transition and a
discrete time-crystalline (DTC) transition. The Hamil-
tonian of the SPT model is given by [64]:

Hgspr = Z Jioi_jofoi + Zhiaf
i ; @)

T T z Yy Y z
+ E Viloioi, +o;q0l0] 1072)

K2

with J; € [7WJ,WJ], h; € [*Wh,Wh], and V; €
[-Wy, Wy ]. Hgpr exhibits a Zs X Zo symmetry, which
gives rise to an MBL SPT (Haldane) phase for W; >
Wh, Wy and a topologically-trivial MBL phase for W; <«
Wi, Wy [I5L18,[65]. For the DTC model, we consider the

Floquet unitary evolution Up = Texp(—z’ foT HF(t)dt)
generated by the stroboscopic Hamiltonian:

Ha(t) = {Zi JioFo7, + hiot +Vie? t€[0,T/2)
—T 200 te[T/2,T)
(3)
where J; € [0.5,1.5], T =2, h; € [0,h] and V; € [0,2V].
When h < 1, the Floquet system spontaneously breaks
time-translation symmetry and is in the so-called DTC
phase, while for & > 1, the system is in a Floquet para-
magnetic phase [20, 211 29, 66H68]. We analyze each
of these models using the four diagnostics previously
described: (i) the order parameter, (ii) the (r)-ratio,
(iii) the half-chain entanglement, and (iv) the variance,



var(Sr2). We observe the same qualitative behavior
for both transitions across all diagnostics: An interven-
ing ergodic phase emerges which terminates at the non-
interacting critical point. This is illustrated in Figs. 2p,f
using Sy, /o for both the SPT model (for an eigenstate of
Hgpr at zero energy density) and the DTC model (for an
eigenstate of Up at 7 quasi-energy); all additional data
for the different diagnostics can be found in the supple-
mental material [45]. We further analyze the finite-size
effects arising from small couplings [45], which we believe
underlie previous numerical observations of apparent di-
rect transitions [20] 26H28].

Ezperimental Realization.—Motivated by recent ad-
vances in the characterization and control of Rydberg
states, we propose an experimental protocol to di-
rectly explore the emergence of ergodicity between MBL
phases. Our protocol is most naturally implemented in
one dimensional chains of either alkali or alkaline-earth
atoms [36-43]. To be specific, we consider 8’Rb with
an effective spin-1/2 encoded in hyperfine states: ||) =
|[F=1,mp=—1) and |1) = |F=2,mp=—-2). Re-
cent experiments have demonstrated the ability to gen-
erate strong interactions via either Rydberg-dressing in
an optical lattice (where atoms are typically spaced by
~ 0.5 pm) or via Rydberg-blockade in a tweezer array
(where atoms are typically spaced by ~ 3 um) [36H43].
Focusing on the optical lattice setup, dressing enables
the generation of tunable, long-range soft-core Ising in-
teractions, Hzz; = Ei’j Jijofo;, with a spatial profile
that interpolates between a constant at short distances
(determined by the blockade radius) and a 1/r® van der
Waals tail.

A vparticularly simple implementation of a PM-SG
Hamiltonian (closely related to Eqn. 1) is to alternate
time evolution under Hzz and Hx =), h;jof, with the
latter being implemented via a two-photon Raman tran-
sition (Fig. ) In the high frequency limit, the dynamics
are governed by an effective Hamiltonian:

1 T2
He = hio? + Jiyoiot, (4
o T1—|-TQZ Ty +¢2%: woioj . W

7

where Hy is applied for time 7, Hzyz is applied for
time 79, and the Floquet frequency w = 27 /(11 + 12) >
hs, Jij. This latter inequality ensures that both Flo-
quet heating and higher-order corrections to Heg can be
safely neglected on experimentally relevant time-scales
[45] 69, [70]. Note that unlike the DTC model (Eqn. 3),
here Floquet engineering is being used to emulate a static
MBL PM-SG Hamiltonian [71], [72].

Although our prior analysis has focused on eigenstate
properties, we will now demonstrate, that the phase dia-
gram can also be characterized via the dynamics of local
observables. To investigate this behavior, we use Krylov
subspace methods [73H76] to numerically simulate the
dynamics of Heg with 4 = 70 = 1, Jiq1 € [—1,-3],
Jiit2 = 0.6J;,41 and h; € [h,3h]. We note that the
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FIG. 4. (a)Schematic of the proposed experimental protocol.
Within an optical lattice, neutral atoms are prepared along
two adjacent diagonals (i.e. with a gas microscope), defining
a zig-zag spin chain configuration. Dressing with a Rydberg
state |r) leads to Hzz with an additional onsite field Hz
>, 07, while a two-photon Raman transition mediated by an
excited state |e) leads to Hx. (b) By combining rapid spin
echo pulses with Floquet evolution under Hx and Hzz + Hz,
one can engineer Heg (Eqn. . (c-e) Dynamics of o7 /5 (blue)
and 07 ,5_107 5 (ved) under Heg starting with initial states
|1he) and [1..), respectively. Different panels correspond to
representative behaviors for the three distinct phases (tuned
via h). (f) The height of the late-time plateau distinguishes
between the three phases. Each data point corresponds to
averaging over at least 10% disorder realizations.

ratio of the nearest- to next-nearest-neighbor coupling
strength is chosen based upon the experimentally mea-
sured Rydberg-dressing-interaction profile and a 1D zig-
zag chain geometry (Fig. ) [38, 77, [78].

For system sizes up to L = 20, we compute the dy-
namics of initial states |¢,) and |¢,.) [[9]; both states
are easily preparable in experiment, close to zero energy
density, and chosen such that (¢s]07 ), |tz) = 1 and
(.| 02/2,10E/2 [t..) = 1. Starting with |¢,) as our ini-
tial state and large h, we observe that (o7 ,(t)) plateaus
to a finite value at late-times, indicating the system is in
the MBL PM phase (Fig.[d). Analogously, for [t..) and
small h, we observe that (o7 , ()07 ,(t)) plateaus to a
finite value at late-times, indicating the system is in the
MBL SG phase (Fig. de). For h ~ 1, both observables
decay to zero, indicating the system is the ergodic phase
(Fig. 4{). The plateau value of the two observables as
a function of h clearly identifies the intervening ergodic
region (Fig. [).

To ensure that one can observe the intervening ergodic
phase within experimental coherence times, we now es-
timate the time-scales necessary to carry out our proto-



col. Previous experiments using Rydberg dressing have
demonstrated coherence times To ~ 1 ms, with near-
est neighbor couplings J; ;41 ~ (2m) x 13 kHz and a
microwave-induced m-pulse duration ~ 25 us [38]. Taken
together, this leads to an estimate of ~ 55 us for the
Floquet period (Fig. 4b). Crucially, within T5 (i.e.~ 20
Floquet cycles), all observables approach their late-time
plateaus [45].

Analytic Discussion.—We conclude by discussing pre-
vious analytical results and how they may shed light on
the origins of the intervening ergodic phase. In the ab-
sence of interactions, the Hamiltonian transitions we con-
sider all fall into infinite-randomness universality classes
characterized by both a divergent single-particle density
of states (DOS, D(e) ~ |elog®e|~' near zero single-
particle energy ) and single-particle orbitals with di-
verging mean and typical localization lengths (&mean ~
|log?¢| and &y, ~ |loge| respectively) [80-H85]. These
divergences suggest that two-body resonances might di-
rectly destabilize MBL upon the introduction of interac-
tions; however, a simple counting of resonances in typical
blocks does not produce such an instability: In a block of
length [, there are IN(g) “active” single particle orbitals
with &yp(e) > 1, where N(e) = [“de’ D(g') is the inte-
grated DOS [33], [45] [86]. These orbitals overlap in real
space and are thus susceptible to participating in pertur-
bative two-body resonances. A perturbative instability
of the localized state arises if [N diverges as ¢ — 0; even
for arbitrarily small interactions, a large network of reso-
nant pairs can be found at low enough energy. Using the
DOS and localization lengths of the infinite-randomness
transition, we find [N ~ 1/|loge| which vanishes slowly
ase — 0.

Alternatively, one might consider the susceptibility to
‘avalanches’ due to rare thermal bubbles induced by the
interactions [34], 87, [88]. For a system with a distribu-
tion of localization lengths, it has recently been shown
that the average localization length controls this insta-
bility [35]: for £ > 2/log2, thermal bubbles avalanche.
However, this is within a model where the orbitals have a
single localization center. Near the infinite-randomness
transition, the orbitals have two centers whose separa-
tion is controlled by &pnean but whose overlap onto a pu-
tative thermal bubble is controlled by &typ. Thus, while
Emean diverges logarithmically, the more appropriate %
remains finite and this criterion does not produce an ab-
solute instability [45].

Finally, let us note that the direct numerical obser-
vation of avalanche instabilities remains extremely chal-
lenging [34, [R9]; the presence of a robust intervening
ergodic region in our study suggests that an alternate
mechanism might be at the heart of our observations.

Note added.—During the completion of this work, we
became aware of complementary work on the presence
of intervening thermal phases between MBL transitions
[90].
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