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Neural networks can emulate nonlinear physical systems with high accuracy, yet they may
produce physically-inconsistent results when violating fundamental constraints. Here, we introduce
a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints
in the architecture or the loss function. Applied to convective processes for climate modeling,
architectural constraints enforce conservation laws to within machine precision without degrading
performance. Enforcing constraints also reduces errors in the subsets of the outputs most impacted
by the constraints.
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I. INTRODUCTION

Many fields of science and engineering (e.g., fluid dy-
namics, hydrology, solid mechanics, chemistry kinetics)
have exact, often analytic, closed-form constraints, i.e.
constraints that can be explicitly written using analytic
functions of the system’s variables. Examples include
translational or rotational invariance, conservation laws,
or equations of state. While physically-consistent models
should enforce constraints to within machine precision,
data-driven algorithms often fail to satisfy well-known
constraints that are not explicitly enforced. In particu-
lar, neural networks (NNs, [1]), powerful regression tools
for nonlinear systems, may severely violate constraints on
individual samples while optimizing overall performance.

Despite the need for physically-informed NNs for com-
plex physical systems [2–5], enforcing hard constraints [6]
has been limited to physical systems governed by specific
equations, such as advection equations [7–9], Reynolds-
averaged Navier-Stokes equations [10, 11], boundary con-
ditions of idealized flows [12], or quasi-geostrophic equa-
tions [13]. To address this gap, we introduce a system-
atic method to enforce analytic constraints arising in
more general physical systems to within machine preci-
sion, namely the Architecture-Constrained NN or ACnet.
We then compare ACnets to unconstrained (UCnets) and
loss-constrained NNs (LCnets, in which soft constraints
are added through a penalization term in the loss func-
tion [e.g., 14–16]) in the particular case of climate mod-
eling, where the system is high-dimensional and the con-
straints (such as mass and energy conservation) are few
but crucial [17].

∗ tom.beucler@gmail.com

II. THEORY

A. Formulating the Constraints

Consider a NN mapping an input vector x ∈ Rm

to an output vector y ∈ Rp . Enforcing constraints is
easiest for linearly-constrained NNs, i.e. NNs for which
the constraints (C) can be written as a linear system of
rank n:

(C) def
=

{
C

[
x
y

]
= 0

}
. (1)

We call C ∈ Rn ×Rm+p the constraints matrix, and use
bold font for vectors and tensors to distinguish them from
scalars. For the regression problem to have non-unique
solutions, the number of independent constraints n has
to be strictly less than m+ p.

In Figure 1, we consider a generic regression problem
subject to analytic constraints (C) that may be nonlin-
ear, and propose how to formulate a linearly-constrained
NN. First, define the regression’s inputs x0 and outputs
y0, which respectively become the temporary NN’s fea-
tures and targets. Then (Formulation 1), write the con-
straints (C) as an identically zero function c of the inputs,
the outputs, and additional parameters z the constraints
may involve. We recommend non-dimensionalizing all
variables to facilitate the design, interpretation, and per-
formance of the loss function. While the function c may
be nonlinear, it can always be written as the sum of:
(1) terms x that only depend on inputs and (2) terms y
that depend on inputs, outputs and additional parame-
ters. Thus the constraints can be written as:

c (x0, y0, z) = C

[
x (x0)

y (x0, y0, z)

]
, (2)

where C is a matrix. Finally (Formulation 2), choose x
and y as the NN’s new inputs and outputs. If x and y are
not bijective functions of (x0, y0), add variables to the
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Step 1

Define inputs x0, outputs y0

Write physical constraints
Non-dimensionalize

Formulation 1

x0
NN7→ y0

c (x0,y0, z) = 0

Step 2

Write c as explicit sum of:
(1) x only dependent on x0,
(2) y dependent on x0,y0, z.

Formulation 2

x
NN7→ y

C
[
x y

]T
= 0

Example 1: exp (x0) + y0

x0z
− 3z3 = 15

def→




x

def
= exp (x0)

y
def
=
[

y0

x0z
z3 + 5

]T ⇒
[
1 1 −3

] [
x y

]T
= 0

Example 2: x2
0,t − x0,t

dy0,t

dt = 0
def→




x

def
=
[
x0,t x2

0,t y0,t−1

]T

y
def
= ∆t−1x0,t (y0,t − y0,t−1)

⇒
[
0 1 0 −1

] [
x y

]T
= 0

FIG. 1. Framework to treat constrained regression problems using linearly-constrained NNs, with two examples: (1) A regression
problem with one nonlinear constraint, and (2) a time-prediction problem with one differential nonlinear constraint that we
discretize using a forward Euler method of timestep ∆t. Note that the choice of x,y, and C is not unique.

NN’s inputs and outputs to recover x0 and y0 after opti-
mization (e.g., we add x0,t and y0,t−1 to x in Example
2). We are now in a position to build a computationally-
efficient NN that satisfies the linear constraints (C).

B. Enforcing the Constraints

Consider a NN trained on preexisting measurements of
x and y. For simplicity’s sake, we measure the quality
of its output yNN using a standard mean-squared error
(MSE) misfit:

MSE (yTruth,yNN)
def
= ‖yErr‖2

def
=

1

p

p∑

k=1

y2Err,k, (3)

where we have introduced the error vector, defined as the
difference between the NN’s output and the “truth”:

yErr
def
= yNN − yTruth. (4)

In the reference case of an “unconstrained network” (UC-
net), we optimize a multi-layer perceptron [e.g., 18, 19]
using MSE as its loss function L. To enforce the con-
straints (C) within NNs, we consider two options:

(1) Constraining the loss function (LCnet, soft
constraints): We first test a soft penalization of the NN
for violating physical constraints using a penalty P, de-
fined as the mean-squared residual from the constraints:

P (x,yNN)
def
=

∥∥∥∥C
[

x
yNN

]∥∥∥∥
2

,

=
1

n

n∑

i=1




m∑

j=1

Cijxj +

p∑

k=1

Ci(k+m)yNN,k




2

,

(5)
and given a weight α ∈ [0, 1] in the loss function L:

L (α) = αP (x,yNN)+(1− α) MSE (yTruth,yNN) . (6)

(2) Constraining the architecture (ACnet, hard
constraints): Alternatively, we treat the constraints
as hard and augment a standard, optimizable NN with
n fixed conservation layers that sequentially enforce the
constraints (C) to within machine precision (Figure 2),
while keeping the MSE as the loss function:

(ACnet)⇒
{

min MSE s.t. C
[
x yNN

]T
= 0

}
(7)

The optimizable NN calculates a “direct” output whose
size is p − n. We then calculate the remaining output’s
components of size n as exact “residuals” from the con-
straints. Concatenating the “direct” and “residual” vec-
tors results in the full output yNN that satisfies the con-
straints to within machine precision. Since our loss uses
the full output yNN, the gradients of the loss function are
passed through the constraints layers during optimiza-
tion, meaning that the final NN’s weights and biases de-
pend on the constraints (C). ACnet improves upon the
common approach of calculating “residual” outputs af-
ter training because ACnet exposes the NN to “residual”
output data during training (SM C.3). A possible imple-
mentation of the constraints layer uses custom (Tensor-
flow in our case) layers with fixed parameters that solve
the system of equations (C) , in row-echelon form, from
the bottom to the top row (SM B.1). Note that we are
free to choose which outputs to calculate as “residuals”,
which introduces n new hyperparameters (SM B.2).

C. Linking Constraints to Performance

Intuitively, we might expect the NNs’ performance to
improve once we enforce constraints arising in physical
systems with few degrees of freedom, but this may not
hold true with many degrees of freedom. We formalize
the link between constraints and performance by: (1)
decomposing the NN’s prediction into the “truth” and
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error vectors following equation 4; and (2) assuming that
constraints exactly hold for the “truth” (no errors in mea-
surement). This yields:

C

[
x
yNN

]
def
=

0︷ ︸︸ ︷
C

[
x

yTruth

]
+C

[
0
yErr

]
. (8)

Equation 8 relates how much the constraints are violated
to the error vector. More explicitly, if we measure perfor-
mance using the MSE, we may square each component
of Equation 8. The resulting equation links how much
physical constraints are violated to the squared error for
each constraint of index i ∈ J1, nK:

(
C

[
x
yNN

])2

i︸ ︷︷ ︸
Physical constraints

=

p∑

k=1

C2
i(k+m)y

2
Err,k

︸ ︷︷ ︸
Squared−error>0

+

p∑

k=1

∑

l 6=k

Ci(k+m)Ci(l+m)yErr,kyErr,l

︸ ︷︷ ︸
Cross−term

(9)
In ACnets, we strictly enforce physical constraints, set-

ting the left-hand side of Equation 9 to 0, within numer-
ical errors. As the squared error is positive-definite, the
cross-term is always negative in ACnets as both terms
sum up to 0. It is difficult to predict the cross-term before
optimization, hence Equation 9 does not provide a-priori
predictions of performance, even for ACnets. Instead, it
links how much the NN violates constraints to how well it
predicts outputs that appear in the constraints equations:
the more negative the cross-term, the larger the squared
error for a given violation of physical constraints.

III. APPLICATION

A. Convective Parameterization for Climate
Modeling

The representation of subgrid-scale processes in coarse-
scale, numerical models of the atmosphere, referred to as



x1

...
xm







y1
...

yp−n






yp−n+1

...
yp




Inputs Direct Outputs Residual Outputs

Standard

NN
(Optimizable)

Constraints
Layers

(Fixed)

Inputs fed to Constraints Layers

Optimize using all Outputs

FIG. 2. ACnet: Direct outputs are calculated using a stan-
dard NN, while the remaining outputs are calculated as resid-
uals from the fixed constraints layers.

subgrid parameterization, is a large source of error and
uncertainty in numerical weather and climate prediction
[e.g., 20, 21]. Machine-learning algorithms trained on
fine-scale, process-resolving models can improve subgrid
parameterizations by faithfully emulating the effect of
fine-scale processes on coarse-scale dynamics [e.g., 22–
25, see Section 2 of Rasp [26] for a detailed review]. The
problem is that none of these parameterizations exactly
follow conservation laws (e.g., conservation of mass, en-
ergy). This is critical for long-term climate projections,
as the spurious energy production may both exceed the
projected radiative forcing from greenhouse gases and re-
sult in large thermodynamic drifts or biases over a long
time-period. Motivated by this shortcoming, we build
a NN parameterization of convection and clouds that we
constrain to conserve 4 quantities: column-integrated en-
ergy, mass, longwave radiation, and shortwave radiation.

B. Model and Data

We use the Super-Parameterized Community Atmo-
sphere Model 3.0 [27] to simulate the climate for two
years in aquaplanet configuration [28], where the surface
temperatures are fixed with a realistic equator-to-pole
gradient [29]. Following [24]’s sensitivity tests, we use
42M samples from the simulation’s first year to train the
NN (training set) and 42M samples from the simulation’s
second year to validate the NN (validation set). Since we
use the validation set to adjust the NN’s hyperparam-
eters and avoid overfitting, we additionally introduce a
test set using 42M different samples from the simulation’s
second year to provide an unbiased estimator of the NNs’
performances. Note that each sample represents a single
atmospheric column at a given time, longitude, and lati-
tude.

C. Formulating the Conservation Laws in a Neural
Network

The parameterization’s goal is to predict the rate at
which sub-grid convection vertically redistributes heat
and water based on the current large-scale thermody-
namic state. We group all variables describing the local
climate in an input vector x of size 304 (5 vertical profiles
with 30 levels each, prescribed large-scale conditions LS
for all profiles of size 150, and 4 scalars):

x =
[

(qv, ql, qi,T ,v,LS, ps, S0) SHF LHF
]T
, (10)

where all variables are defined in SM A. We then concate-
nate the time-tendencies from convection and the addi-
tional variables involved in the conservation laws to form
an output vector y of size 216 (7 vertical profiles with 30
levels, followed by 6 scalars):
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y =
[
q̇v q̇l q̇i Ṫ ṪKE lw sw LWt LWs SWt SWs P Pi

]T
, (11)

We normalize all variables to the same units before
non-dimensionalizing them using the constant 1W m−2

(SM A.5). Finally, we derive the dimensionless conser-
vation laws (SM A.1-A.4) and write them as a sparse
matrix of size 4× (304 + 218) :

C =



0 1 `s −`sδp −`fδp 0 −δp δp 0 0 −1 1 1 −1 −`f `f
0 0 1 −δp −δp −δp 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 δp 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 δp 0 0 −1 1 0 0


 , (12)

that acts on x and y to yield Equation 1.
Each row of the constraints matrixC describes a differ-

ent conservation law: The first row is column-integrated
enthalpy conservation (here equivalent to energy con-
servation), the second row is column-integrated water
conservation (here equivalent to mass conservation), the
third row is column-integrated longwave radiation con-
servation and the last row is column-integrated shortwave
radiation conservation.

D. Implementation

We implement the three NN types and a multi-linear
regression baseline using the Tensorflow library [30] ver-
sion 1.13 with Keras [31] version 2.2.4: (1) LCnets for
which we vary the weight α given to conservation laws
from 0 to 1 (Equation 6), (2) our reference ACnet, and
(3) UCnet, i.e. an unconstrained LCnet of weight α = 0.
In our reference ACnet, we write the constraints layers
in Tensorflow to solve the system of equations (C) from
bottom to top, and calculate surface tendencies as residu-
als of the conservation equations (SM B.1); switching the
“residual” outputs to different vertical levels does not sig-
nificantly change the validation loss nor the constraints
penalty (SM B.3). After testing multiple architectures
and activation functions (SM C.2), we chose 5 hidden
layers of 512 nodes with leaky rectified linear-unit acti-
vations as our standard multi-layer perceptron architec-
ture, resulting in ∼1.3M trainable parameters. We op-
timized the NN’s weights and biases with the RMSprop
optimizer [32] for LCnets (because it was more stable
than the Adam optimizer [33]), used Sherpa for hyper-
parameter optimizations [34], and saved the NN’s state
of minimal validation loss over 20 epochs.

E. Results

In Figure 3a, we compare mean performance (mea-
sured by MSE) and by how much physical constraints

are violated (measured by P) for the three NN types.
As expected, we note a monotonic trade-off between per-
formance and constraints as we increase α from 0 to 1
in the loss function. This trade-off is well-measured by
MSE and P across the training, validation, and test sets
(SM Table V). Interestingly, the physical constraints are
easier to satisfy than reducing MSE in our case, likely
because it is difficult to deterministically predict pre-
cipitation, which is strongly non-Gaussian, inherently
stochastic, and whose error contributes to a large por-
tion of MSE. Despite this, UCnet may violate physical
constraints more than our multi-linear regression base-
line.

Our first key result is that ACnet performs nearly as
well as our lowest-MSE UCnet on average (to within
3%) while satisfying constraints to ∼

(
10−9%

)
(SM C.1).

This result holds across the training, validation and test
sets (SM Table IV). In our case, ACnets perform slightly
less well than UCnet because they are harder to optimize
and the “residual” outputs exhibit systematically larger
errors (SM B.2). This systematic, unphysical bias can be
remedied by multiplying the weights of these “residual”
outputs in the loss function (SM B.3) by a factor β > 1
(SM Equation 12 and SM Figure 2). β can be objec-
tively chosen alongside the “residual” outputs via formal
hyperparameter optimization (SM C.2).

In Figure 3b, we compare how much the NNs violate
column energy conservation (RESID) to the prediction
of a variable that appears in that constraint: the total
thermodynamic tendency in the enthalpy conservation
equation (THERMO):

RESID︷ ︸︸ ︷(
C

[
x
yNN

])

1

=

THERMO︷ ︸︸ ︷
δp ·

(
ṪKE − Ṫ − `sq̇v − `f q̇l

)
+...,

(13)
where the ellipsis includes the surface fluxes, radiation,
and precipitation terms. ACnet predicts THERMO more
accurately than all NNs (full blue line) by an amount
closely related to how much each NN violates enthalpy
consevation (dashed lines), followed by LCnet (full green
line). This yields our second key result: Enforcing con-
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FIG. 3. (a) MSE and P averaged over all samples of the test dataset for UCnet, LCnets of varying α, and ACnet. The
dashed lines indicate MSE and P for our multi-linear regression baseline. (b) Mean-squared error in the thermodynamic term
(THERMO) and the enthalpy residual (RESID) versus latitude for our lowest-MSE NN in each category.

straints, whether in the architecture or the loss function,
can systematically reduce the error of variables that ap-
pear in the constraints. This result holds true across the
training, validation, and test sets (SM Figure 4). How-
ever, possibly since our case has many degrees of free-
dom, it does not hold true for individual components
of THERMO as their cross-term in Equation 9 is more
negative for ACnet, nor does it hold for variables that
are hard to predict deterministically (e.g., precipitation).
Additionally, obeying conservation laws does not guar-
antee the ability to generalize well far outside of the
training set, e.g. in the Tropics of a warmer climate
(see Figure 3 of [35]). These results nuance the finding
that physically constraining NNs systematically improves
their generalization ability, which has been documented
for machine learning emulation of low-dimensional ide-
alized flows [5, 12], and motivate physically-constraining
machine-learning algorithms capable of stochastic predic-
tions [36] that are consistent across climates [35].

Finally, although the mapping presented in Section III
has linear constraints, ACnets can also be applied to non-
linearly constrained mappings by using the framework
presented in Figure 1. We give a concrete example in SM
D, where we introduce the concept of “conversion layers”

that transform nonlinearly constrained mappings into
linearly-constrained mappings within NNs and without
overly degrading performance (SM Table IX). Addition-
ally, ACnets can be extended to incorporate inequality
constraints on their “direct” outputs (by using positive-
definite activation functions, discussed in SM E), making
ACnets applicable to a broad range of constrained opti-
mization problems.
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