
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enforcing Analytic Constraints in Neural Networks
Emulating Physical Systems

Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine
Phys. Rev. Lett. 126, 098302 — Published 4 March 2021

DOI: 10.1103/PhysRevLett.126.098302

https://dx.doi.org/10.1103/PhysRevLett.126.098302

Enforcing Analytic Constraints in Neural-Networks Emulating Physical Systems

Tom Beucler,1, 2, ∗ Michael Pritchard,1 Stephan Rasp,3 Jordan Ott, Pierre Baldi,4 and Pierre Gentine2

1Department of Earth System Science, University of California, Irvine, CA, USA
2Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA

3Technical University of Munich, Munich, Germany
4Department of Computer Science, University of California, Irvine, CA, USA

(Dated: February 2, 2021)

Neural networks can emulate nonlinear physical systems with high accuracy, yet they may
produce physically-inconsistent results when violating fundamental constraints. Here, we introduce
a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints
in the architecture or the loss function. Applied to convective processes for climate modeling,
architectural constraints enforce conservation laws to within machine precision without degrading
performance. Enforcing constraints also reduces errors in the subsets of the outputs most impacted
by the constraints.
Main Repository: https://github.com/raspstephan/CBRAIN-CAM

Figures and Tables: https://github.com/tbeucler/CBRAIN-CAM/blob/master/notebooks/

tbeucler_devlog/042_Figures_PRL_Submission.ipynb

I. INTRODUCTION

Many fields of science and engineering (e.g., fluid dy-
namics, hydrology, solid mechanics, chemistry kinetics)
have exact, often analytic, closed-form constraints, i.e.
constraints that can be explicitly written using analytic
functions of the system’s variables. Examples include
translational or rotational invariance, conservation laws,
or equations of state. While physically-consistent models
should enforce constraints to within machine precision,
data-driven algorithms often fail to satisfy well-known
constraints that are not explicitly enforced. In particu-
lar, neural networks (NNs, [1]), powerful regression tools
for nonlinear systems, may severely violate constraints on
individual samples while optimizing overall performance.

Despite the need for physically-informed NNs for com-
plex physical systems [2–5], enforcing hard constraints [6]
has been limited to physical systems governed by specific
equations, such as advection equations [7–9], Reynolds-
averaged Navier-Stokes equations [10, 11], boundary con-
ditions of idealized flows [12], or quasi-geostrophic equa-
tions [13]. To address this gap, we introduce a system-
atic method to enforce analytic constraints arising in
more general physical systems to within machine preci-
sion, namely the Architecture-Constrained NN or ACnet.
We then compare ACnets to unconstrained (UCnets) and
loss-constrained NNs (LCnets, in which soft constraints
are added through a penalization term in the loss func-
tion [e.g., 14–16]) in the particular case of climate mod-
eling, where the system is high-dimensional and the con-
straints (such as mass and energy conservation) are few
but crucial [17].

∗ tom.beucler@gmail.com

II. THEORY

A. Formulating the Constraints

Consider a NN mapping an input vector x ∈ Rm

to an output vector y ∈ Rp . Enforcing constraints is
easiest for linearly-constrained NNs, i.e. NNs for which
the constraints (C) can be written as a linear system of
rank n:

(C) def
=

{
C

[
x
y

]
= 0

}
. (1)

We call C ∈ Rn ×Rm+p the constraints matrix, and use
bold font for vectors and tensors to distinguish them from
scalars. For the regression problem to have non-unique
solutions, the number of independent constraints n has
to be strictly less than m+ p.

In Figure 1, we consider a generic regression problem
subject to analytic constraints (C) that may be nonlin-
ear, and propose how to formulate a linearly-constrained
NN. First, define the regression’s inputs x0 and outputs
y0, which respectively become the temporary NN’s fea-
tures and targets. Then (Formulation 1), write the con-
straints (C) as an identically zero function c of the inputs,
the outputs, and additional parameters z the constraints
may involve. We recommend non-dimensionalizing all
variables to facilitate the design, interpretation, and per-
formance of the loss function. While the function c may
be nonlinear, it can always be written as the sum of:
(1) terms x that only depend on inputs and (2) terms y
that depend on inputs, outputs and additional parame-
ters. Thus the constraints can be written as:

c (x0, y0, z) = C

[
x (x0)

y (x0, y0, z)

]
, (2)

where C is a matrix. Finally (Formulation 2), choose x
and y as the NN’s new inputs and outputs. If x and y are
not bijective functions of (x0, y0), add variables to the

https://github.com/raspstephan/CBRAIN-CAM
https://github.com/tbeucler/CBRAIN-CAM/blob/master/notebooks/tbeucler_devlog/042_Figures_PRL_Submission.ipynb
https://github.com/tbeucler/CBRAIN-CAM/blob/master/notebooks/tbeucler_devlog/042_Figures_PRL_Submission.ipynb
mailto:tom.beucler@gmail.com

2

Step 1

Define inputs x0, outputs y0

Write physical constraints
Non-dimensionalize

Formulation 1

x0
NN7→ y0

c (x0,y0, z) = 0

Step 2

Write c as explicit sum of:
(1) x only dependent on x0,
(2) y dependent on x0,y0, z.

Formulation 2

x
NN7→ y

C
[
x y

]T
= 0

Example 1: exp (x0) + y0

x0z
− 3z3 = 15

def→




x

def
= exp (x0)

y
def
=
[

y0

x0z
z3 + 5

]T ⇒
[
1 1 −3

] [
x y

]T
= 0

Example 2: x2
0,t − x0,t

dy0,t

dt = 0
def→




x

def
=
[
x0,t x2

0,t y0,t−1

]T

y
def
= ∆t−1x0,t (y0,t − y0,t−1)

⇒
[
0 1 0 −1

] [
x y

]T
= 0

FIG. 1. Framework to treat constrained regression problems using linearly-constrained NNs, with two examples: (1) A regression
problem with one nonlinear constraint, and (2) a time-prediction problem with one differential nonlinear constraint that we
discretize using a forward Euler method of timestep ∆t. Note that the choice of x,y, and C is not unique.

NN’s inputs and outputs to recover x0 and y0 after opti-
mization (e.g., we add x0,t and y0,t−1 to x in Example
2). We are now in a position to build a computationally-
efficient NN that satisfies the linear constraints (C).

B. Enforcing the Constraints

Consider a NN trained on preexisting measurements of
x and y. For simplicity’s sake, we measure the quality
of its output yNN using a standard mean-squared error
(MSE) misfit:

MSE (yTruth,yNN)
def
= ‖yErr‖2

def
=

1

p

p∑

k=1

y2Err,k, (3)

where we have introduced the error vector, defined as the
difference between the NN’s output and the “truth”:

yErr
def
= yNN − yTruth. (4)

In the reference case of an “unconstrained network” (UC-
net), we optimize a multi-layer perceptron [e.g., 18, 19]
using MSE as its loss function L. To enforce the con-
straints (C) within NNs, we consider two options:

(1) Constraining the loss function (LCnet, soft
constraints): We first test a soft penalization of the NN
for violating physical constraints using a penalty P, de-
fined as the mean-squared residual from the constraints:

P (x,yNN)
def
=

∥∥∥∥C
[

x
yNN

]∥∥∥∥
2

,

=
1

n

n∑

i=1




m∑

j=1

Cijxj +

p∑

k=1

Ci(k+m)yNN,k




2

,

(5)
and given a weight α ∈ [0, 1] in the loss function L:

L (α) = αP (x,yNN)+(1− α) MSE (yTruth,yNN) . (6)

(2) Constraining the architecture (ACnet, hard
constraints): Alternatively, we treat the constraints
as hard and augment a standard, optimizable NN with
n fixed conservation layers that sequentially enforce the
constraints (C) to within machine precision (Figure 2),
while keeping the MSE as the loss function:

(ACnet)⇒
{

min MSE s.t. C
[
x yNN

]T
= 0

}
(7)

The optimizable NN calculates a “direct” output whose
size is p − n. We then calculate the remaining output’s
components of size n as exact “residuals” from the con-
straints. Concatenating the “direct” and “residual” vec-
tors results in the full output yNN that satisfies the con-
straints to within machine precision. Since our loss uses
the full output yNN, the gradients of the loss function are
passed through the constraints layers during optimiza-
tion, meaning that the final NN’s weights and biases de-
pend on the constraints (C). ACnet improves upon the
common approach of calculating “residual” outputs af-
ter training because ACnet exposes the NN to “residual”
output data during training (SM C.3). A possible imple-
mentation of the constraints layer uses custom (Tensor-
flow in our case) layers with fixed parameters that solve
the system of equations (C) , in row-echelon form, from
the bottom to the top row (SM B.1). Note that we are
free to choose which outputs to calculate as “residuals”,
which introduces n new hyperparameters (SM B.2).

C. Linking Constraints to Performance

Intuitively, we might expect the NNs’ performance to
improve once we enforce constraints arising in physical
systems with few degrees of freedom, but this may not
hold true with many degrees of freedom. We formalize
the link between constraints and performance by: (1)
decomposing the NN’s prediction into the “truth” and

3

error vectors following equation 4; and (2) assuming that
constraints exactly hold for the “truth” (no errors in mea-
surement). This yields:

C

[
x
yNN

]
def
=

0︷ ︸︸ ︷
C

[
x

yTruth

]
+C

[
0
yErr

]
. (8)

Equation 8 relates how much the constraints are violated
to the error vector. More explicitly, if we measure perfor-
mance using the MSE, we may square each component
of Equation 8. The resulting equation links how much
physical constraints are violated to the squared error for
each constraint of index i ∈ J1, nK:

(
C

[
x
yNN

])2

i︸ ︷︷ ︸
Physical constraints

=

p∑

k=1

C2
i(k+m)y

2
Err,k

︸ ︷︷ ︸
Squared−error>0

+

p∑

k=1

∑

l 6=k

Ci(k+m)Ci(l+m)yErr,kyErr,l

︸ ︷︷ ︸
Cross−term

(9)
In ACnets, we strictly enforce physical constraints, set-

ting the left-hand side of Equation 9 to 0, within numer-
ical errors. As the squared error is positive-definite, the
cross-term is always negative in ACnets as both terms
sum up to 0. It is difficult to predict the cross-term before
optimization, hence Equation 9 does not provide a-priori
predictions of performance, even for ACnets. Instead, it
links how much the NN violates constraints to how well it
predicts outputs that appear in the constraints equations:
the more negative the cross-term, the larger the squared
error for a given violation of physical constraints.

III. APPLICATION

A. Convective Parameterization for Climate
Modeling

The representation of subgrid-scale processes in coarse-
scale, numerical models of the atmosphere, referred to as



x1

...
xm







y1
...

yp−n






yp−n+1

...
yp




Inputs Direct Outputs Residual Outputs

Standard

NN
(Optimizable)

Constraints
Layers

(Fixed)

Inputs fed to Constraints Layers

Optimize using all Outputs

FIG. 2. ACnet: Direct outputs are calculated using a stan-
dard NN, while the remaining outputs are calculated as resid-
uals from the fixed constraints layers.

subgrid parameterization, is a large source of error and
uncertainty in numerical weather and climate prediction
[e.g., 20, 21]. Machine-learning algorithms trained on
fine-scale, process-resolving models can improve subgrid
parameterizations by faithfully emulating the effect of
fine-scale processes on coarse-scale dynamics [e.g., 22–
25, see Section 2 of Rasp [26] for a detailed review]. The
problem is that none of these parameterizations exactly
follow conservation laws (e.g., conservation of mass, en-
ergy). This is critical for long-term climate projections,
as the spurious energy production may both exceed the
projected radiative forcing from greenhouse gases and re-
sult in large thermodynamic drifts or biases over a long
time-period. Motivated by this shortcoming, we build
a NN parameterization of convection and clouds that we
constrain to conserve 4 quantities: column-integrated en-
ergy, mass, longwave radiation, and shortwave radiation.

B. Model and Data

We use the Super-Parameterized Community Atmo-
sphere Model 3.0 [27] to simulate the climate for two
years in aquaplanet configuration [28], where the surface
temperatures are fixed with a realistic equator-to-pole
gradient [29]. Following [24]’s sensitivity tests, we use
42M samples from the simulation’s first year to train the
NN (training set) and 42M samples from the simulation’s
second year to validate the NN (validation set). Since we
use the validation set to adjust the NN’s hyperparam-
eters and avoid overfitting, we additionally introduce a
test set using 42M different samples from the simulation’s
second year to provide an unbiased estimator of the NNs’
performances. Note that each sample represents a single
atmospheric column at a given time, longitude, and lati-
tude.

C. Formulating the Conservation Laws in a Neural
Network

The parameterization’s goal is to predict the rate at
which sub-grid convection vertically redistributes heat
and water based on the current large-scale thermody-
namic state. We group all variables describing the local
climate in an input vector x of size 304 (5 vertical profiles
with 30 levels each, prescribed large-scale conditions LS
for all profiles of size 150, and 4 scalars):

x =
[

(qv, ql, qi,T ,v,LS, ps, S0) SHF LHF
]T
, (10)

where all variables are defined in SM A. We then concate-
nate the time-tendencies from convection and the addi-
tional variables involved in the conservation laws to form
an output vector y of size 216 (7 vertical profiles with 30
levels, followed by 6 scalars):

4

y =
[
q̇v q̇l q̇i Ṫ ṪKE lw sw LWt LWs SWt SWs P Pi

]T
, (11)

We normalize all variables to the same units before
non-dimensionalizing them using the constant 1W m−2

(SM A.5). Finally, we derive the dimensionless conser-
vation laws (SM A.1-A.4) and write them as a sparse
matrix of size 4× (304 + 218) :

C =



0 1 `s −`sδp −`fδp 0 −δp δp 0 0 −1 1 1 −1 −`f `f
0 0 1 −δp −δp −δp 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 δp 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 δp 0 0 −1 1 0 0


 , (12)

that acts on x and y to yield Equation 1.
Each row of the constraints matrixC describes a differ-

ent conservation law: The first row is column-integrated
enthalpy conservation (here equivalent to energy con-
servation), the second row is column-integrated water
conservation (here equivalent to mass conservation), the
third row is column-integrated longwave radiation con-
servation and the last row is column-integrated shortwave
radiation conservation.

D. Implementation

We implement the three NN types and a multi-linear
regression baseline using the Tensorflow library [30] ver-
sion 1.13 with Keras [31] version 2.2.4: (1) LCnets for
which we vary the weight α given to conservation laws
from 0 to 1 (Equation 6), (2) our reference ACnet, and
(3) UCnet, i.e. an unconstrained LCnet of weight α = 0.
In our reference ACnet, we write the constraints layers
in Tensorflow to solve the system of equations (C) from
bottom to top, and calculate surface tendencies as residu-
als of the conservation equations (SM B.1); switching the
“residual” outputs to different vertical levels does not sig-
nificantly change the validation loss nor the constraints
penalty (SM B.3). After testing multiple architectures
and activation functions (SM C.2), we chose 5 hidden
layers of 512 nodes with leaky rectified linear-unit acti-
vations as our standard multi-layer perceptron architec-
ture, resulting in ∼1.3M trainable parameters. We op-
timized the NN’s weights and biases with the RMSprop
optimizer [32] for LCnets (because it was more stable
than the Adam optimizer [33]), used Sherpa for hyper-
parameter optimizations [34], and saved the NN’s state
of minimal validation loss over 20 epochs.

E. Results

In Figure 3a, we compare mean performance (mea-
sured by MSE) and by how much physical constraints

are violated (measured by P) for the three NN types.
As expected, we note a monotonic trade-off between per-
formance and constraints as we increase α from 0 to 1
in the loss function. This trade-off is well-measured by
MSE and P across the training, validation, and test sets
(SM Table V). Interestingly, the physical constraints are
easier to satisfy than reducing MSE in our case, likely
because it is difficult to deterministically predict pre-
cipitation, which is strongly non-Gaussian, inherently
stochastic, and whose error contributes to a large por-
tion of MSE. Despite this, UCnet may violate physical
constraints more than our multi-linear regression base-
line.

Our first key result is that ACnet performs nearly as
well as our lowest-MSE UCnet on average (to within
3%) while satisfying constraints to ∼

(
10−9%

)
(SM C.1).

This result holds across the training, validation and test
sets (SM Table IV). In our case, ACnets perform slightly
less well than UCnet because they are harder to optimize
and the “residual” outputs exhibit systematically larger
errors (SM B.2). This systematic, unphysical bias can be
remedied by multiplying the weights of these “residual”
outputs in the loss function (SM B.3) by a factor β > 1
(SM Equation 12 and SM Figure 2). β can be objec-
tively chosen alongside the “residual” outputs via formal
hyperparameter optimization (SM C.2).

In Figure 3b, we compare how much the NNs violate
column energy conservation (RESID) to the prediction
of a variable that appears in that constraint: the total
thermodynamic tendency in the enthalpy conservation
equation (THERMO):

RESID︷ ︸︸ ︷(
C

[
x
yNN

])

1

=

THERMO︷ ︸︸ ︷
δp ·

(
ṪKE − Ṫ − `sq̇v − `f q̇l

)
+...,

(13)
where the ellipsis includes the surface fluxes, radiation,
and precipitation terms. ACnet predicts THERMO more
accurately than all NNs (full blue line) by an amount
closely related to how much each NN violates enthalpy
consevation (dashed lines), followed by LCnet (full green
line). This yields our second key result: Enforcing con-

5

0.0 0.5 1.0
Conservation weight

10 1

100

101

102

103
Lo

ss

ACnet

ACnet

UCnet

LCnet

(a) Performance vs Conservation

MSE

Linear

50 0 50
Latitude ()

101.0

101.5

102.0

102.5

103.0

Er
ro

r

--- THERMO
RESID

(b) MSE of THERMO and RESID

UCnet
LCnet0.01

Linear
ACnet

FIG. 3. (a) MSE and P averaged over all samples of the test dataset for UCnet, LCnets of varying α, and ACnet. The
dashed lines indicate MSE and P for our multi-linear regression baseline. (b) Mean-squared error in the thermodynamic term
(THERMO) and the enthalpy residual (RESID) versus latitude for our lowest-MSE NN in each category.

straints, whether in the architecture or the loss function,
can systematically reduce the error of variables that ap-
pear in the constraints. This result holds true across the
training, validation, and test sets (SM Figure 4). How-
ever, possibly since our case has many degrees of free-
dom, it does not hold true for individual components
of THERMO as their cross-term in Equation 9 is more
negative for ACnet, nor does it hold for variables that
are hard to predict deterministically (e.g., precipitation).
Additionally, obeying conservation laws does not guar-
antee the ability to generalize well far outside of the
training set, e.g. in the Tropics of a warmer climate
(see Figure 3 of [35]). These results nuance the finding
that physically constraining NNs systematically improves
their generalization ability, which has been documented
for machine learning emulation of low-dimensional ide-
alized flows [5, 12], and motivate physically-constraining
machine-learning algorithms capable of stochastic predic-
tions [36] that are consistent across climates [35].

Finally, although the mapping presented in Section III
has linear constraints, ACnets can also be applied to non-
linearly constrained mappings by using the framework
presented in Figure 1. We give a concrete example in SM
D, where we introduce the concept of “conversion layers”

that transform nonlinearly constrained mappings into
linearly-constrained mappings within NNs and without
overly degrading performance (SM Table IX). Addition-
ally, ACnets can be extended to incorporate inequality
constraints on their “direct” outputs (by using positive-
definite activation functions, discussed in SM E), making
ACnets applicable to a broad range of constrained opti-
mization problems.

ACKNOWLEDGMENTS

TB is supported by NSF grants OAC-1835769, OAC-
1835863, and AGS-1734164. PG acknowledges support
from USMILE ERC synergy grant. The work of JO
and PB is in part supported by grants NSF 1839429 and
NSF NRT 1633631 to PB. We thank Eric Christiansen,
Imme Ebert-Uphoff, Bart Van Merrienboer, Tristan Ab-
bott, Ankitesh Gupta, and Derek Chang for advice. We
also thank the meteorology department of LMU Munich
and the Extreme Science and Engineering Discovery En-
vironment supported by NSF grant number ACI-1548562
(charge numbers TG-ATM190002 and TG-ATM170029)
for computational resources. The Supplemental Mate-
rial (SM) can be found at [INSERT URL] and includes
references [13, 23, 37–43].

[1] P. Baldi, Deep Learning in Science: Theory, Algorithms,
and Applications (Cambridge University Press, Cam-
bridge, UK, 2021) in press.

[2] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung,
J. Denzler, N. Carvalhais, and Prabhat, Deep learning
and process understanding for data-driven Earth system
science, Nature 566, 195 (2019).

[3] K. J. Bergen, P. A. Johnson, M. V. De Hoop, and G. C.
Beroza, Machine learning for data-driven discovery in
solid Earth geoscience (2019).

[4] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach,
A. Banerjee, A. Ganguly, S. Shekhar, N. Samatova, and
V. Kumar, Theory-guided data science: A new paradigm
for scientific discovery from data, IEEE Transactions on

https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1126/science.aau0323
https://doi.org/10.1126/science.aau0323
https://doi.org/10.1109/TKDE.2017.2720168

6

Knowledge and Data Engineering 29, 2318 (2017).
[5] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Ku-

mar, Integrating Physics-Based Modeling with Machine
Learning: A Survey, (2020), arXiv:2003.04919.

[6] P. Márquez-Neila, M. Salzmann, and P. Fua, Imposing
Hard Constraints on Deep Networks: Promises and Lim-
itations, (2017), arXiv:1706.02025.

[7] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
Informed Deep Learning (Part I): Data-driven Solu-
tions of Nonlinear Partial Differential Equations, (2017),
arXiv:1711.10561.

[8] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner,
Learning data-driven discretizations for partial differen-
tial equations, Proceedings of the National Academy of
Sciences 116, 15344 (2019).

[9] E. de Bezenac, A. Pajot, and P. Gallinari, Deep Learn-
ing for Physical Processes: Incorporating Prior Scientific
Knowledge, (2017), arXiv:1711.07970.

[10] J. Ling, A. Kurzawski, and J. Templeton, Reynolds av-
eraged turbulence modelling using deep neural networks
with embedded invariance, Journal of Fluid Mechanics
807, 155 (2016).

[11] J. L. Wu, H. Xiao, and E. Paterson, Physics-informed
machine learning approach for augmenting turbulence
models: A comprehensive framework, Physical Review
Fluids 7, 074602 (2018).

[12] L. Sun, H. Gao, S. Pan, and J. X. Wang, Surrogate mod-
eling for fluid flows based on physics-constrained deep
learning without simulation data, Computer Methods in
Applied Mechanics and Engineering 361, 112732 (2020).

[13] T. Bolton and L. Zanna, Applications of Deep Learning
to Ocean Data Inference and Subgrid Parameterization,
Journal of Advances in Modeling Earth Systems 11, 376
(2019).

[14] A. Karpatne, W. Watkins, J. Read, and V. Ku-
mar, Physics-guided Neural Networks (PGNN): An
Application in Lake Temperature Modeling, (2017),
arXiv:1710.11431.

[15] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart,
M. Steinbach, and V. Kumar, Physics guided RNNs for
modeling dynamical systems: A case study in simulating
lake temperature profiles, in SIAM International Con-
ference on Data Mining, SDM 2019 (2019) pp. 558–566,
arXiv:1810.13075v2.

[16] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden
fluid mechanics: Learning velocity and pressure fields
from flow visualizations, Science 367, 1026 (2020).

[17] T. Beucler, S. Rasp, M. Pritchard, and P. Gen-
tine, Achieving Conservation of Energy in Neural
Network Emulators for Climate Modeling, (2019),
arXiv:1906.06622.

[18] A. K. Jain, J. Mao, and K. M. Mohiuddin, Artificial neu-
ral networks: A tutorial (1996).

[19] M. W. Gardner and S. R. Dorling, Artificial neural net-
works (the multilayer perceptron) - a review of applica-
tions in the atmospheric sciences, Atmospheric Environ-
ment 32, 2627 (1998).

[20] T. Palmer, G. Shutts, R. Hagedorn, F. Doblas-Reyes,
T. Jung, and M. Leutbecher, Representing Model Uncer-
tainty in Weather and Climate Prediction, Annual Re-
view of Earth and Planetary Sciences 33, 163 (2005).

[21] T. Schneider, J. Teixeira, C. S. Bretherton, F. Brient,
K. G. Pressel, C. Schär, and A. P. Siebesma, Climate
goals and computing the future of clouds, Nature Climate

Change 7, 3 (2017).
[22] V. M. Krasnopolsky, M. S. Fox-Rabinovitz, and A. A. Be-

lochitski, Using Ensemble of Neural Networks to Learn
Stochastic Convection Parameterizations for Climate and
Numerical Weather Prediction Models from Data Simu-
lated by a Cloud Resolving Model, Advances in Artificial
Neural Systems 2013, 1 (2013).

[23] P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and
G. Yacalis, Could Machine Learning Break the Convec-
tion Parameterization Deadlock?, Geophysical Research
Letters 45, 5742 (2018).

[24] S. Rasp, M. S. Pritchard, and P. Gentine, Deep learn-
ing to represent sub-grid processes in climate mod-
els, Proceedings of the National Academy of Sciences
of the United States of America 115, 9684 (2018),
arXiv:1806.04731.

[25] N. D. Brenowitz and C. S. Bretherton, Prognostic Vali-
dation of a Neural Network Unified Physics Parameteri-
zation, Geophysical Research Letters 45, 6289 (2018).

[26] S. Rasp, Coupled online learning as a way to tackle in-
stabilities and biases in neural network parameterizations
10.5194/gmd-2019-319 (2019), arXiv:1907.01351.

[27] M. Khairoutdinov, D. Randall, and C. DeMott, Sim-
ulations of the Atmospheric General Circulation Using
a Cloud-Resolving Model as a Superparameterization of
Physical Processes, Journal of the Atmospheric Sciences
62, 2136 (2005).

[28] M. S. Pritchard, C. S. Bretherton, and C. A. Demott,
Restricting 32-128 km horizontal scales hardly affects
the MJO in the Superparameterized Community Atmo-
sphere Model v.3.0 but the number of cloud-resolving
grid columns constrains vertical mixing, Journal of Ad-
vances in Modeling Earth Systems 6, 723 (2014).

[29] J. A. Andersen and Z. Kuang, Moist static energy bud-
get of MJO-like disturbances in the atmosphere of a zon-
ally symmetric aquaplanet, Journal of Climate 25, 2782
(2012).

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viegas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed
Systems, (2016), arXiv:1603.04467.

[31] F. Chollet, Keras (2015).
[32] T. Tieleman, G. E. Hinton, N. Srivastava, and K. Swer-

sky, Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude, COURSERA: Neu-
ral Networks for Machine Learning 4, 26 (2012).

[33] D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, (2014), arXiv:1412.6980.

[34] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi,
Sherpa: Robust hyperparameter optimization for ma-
chine learning, SoftwareX (2020), in press.

[35] T. Beucler, M. Pritchard, P. Gentine, and S. Rasp, To-
wards Physically-consistent, Data-driven Models of Con-
vection, (2020), arXiv:2002.08525.

[36] J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, Prab-
hat, and H. Xiao, Enforcing Statistical Constraints in
Generative Adversarial Networks for Modeling Chaotic

https://doi.org/10.1109/TKDE.2017.2720168
http://arxiv.org/abs/2003.04919
https://arxiv.org/abs/2003.04919
https://arxiv.org/pdf/1706.02025.pdf http://arxiv.org/abs/1706.02025
https://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://arxiv.org/pdf/1711.07970.pdf http://arxiv.org/abs/1711.07970
https://arxiv.org/abs/1711.07970
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1029/2018MS001472
https://doi.org/10.1029/2018MS001472
https://arxiv.org/pdf/1710.11431.pdf http://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1710.11431
https://arxiv.org/pdf/1810.13075.pdf
https://arxiv.org/pdf/1810.13075.pdf
https://arxiv.org/abs/1810.13075v2
https://doi.org/10.1126/science.aaw4741
https://arxiv.org/pdf/1906.06622.pdf http://arxiv.org/abs/1906.06622
https://arxiv.org/abs/1906.06622
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1146/annurev.earth.33.092203.122552
https://doi.org/10.1146/annurev.earth.33.092203.122552
https://doi.org/10.1038/nclimate3190
https://doi.org/10.1038/nclimate3190
https://doi.org/10.1155/2013/485913
https://doi.org/10.1155/2013/485913
https://doi.org/10.1029/2018GL078202
https://doi.org/10.1029/2018GL078202
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://arxiv.org/abs/1806.04731
https://doi.org/10.1029/2018GL078510
https://doi.org/10.5194/gmd-2019-319
https://arxiv.org/abs/1907.01351
https://doi.org/10.1175/JAS3453.1
https://doi.org/10.1175/JAS3453.1
https://doi.org/10.1002/2014MS000340
https://doi.org/10.1002/2014MS000340
https://doi.org/10.1175/JCLI-D-11-00168.1
https://doi.org/10.1175/JCLI-D-11-00168.1
http://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://www.cs.toronto.edu/{~}tijmen/csc321/slides/lecture{_}slides{_}lec6.pdf
http://www.cs.toronto.edu/{~}tijmen/csc321/slides/lecture{_}slides{_}lec6.pdf
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2002.08525
https://arxiv.org/abs/2002.08525

7

Dynamical Systems, (2019), arXiv:1905.06841.
[37] M. F. Khairoutdinov and D. a. Randall, Cloud Resolving

Modeling of the ARM Summer 1997 IOP: Model Formu-
lation, Results, Uncertainties, and Sensitivities, Journal
of the Atmospheric Sciences 60, 607 (2003).

[38] W. D. Collins, P. J. Rasch, B. A. Boville, J. J. Hack,
J. R. McCaa, D. L. Williamson, B. P. Briegleb, C. M.
Bitz, S. J. Lin, and M. Zhang, The formulation and atmo-
spheric simulation of the Community Atmosphere Model
version 3 (CAM3), Journal of Climate 19, 2144 (2006).

[39] J. Yuval and P. A. O’Gorman, Stable machine-learning
parameterization of subgrid processes for climate mod-
eling at a range of resolutions, Nature Communications
11, 1 (2020).

[40] A. Krizhevsky and G. Hinton, Learning multiple lay-

ers of features from tiny images.(2009), Cs.Toronto.Edu
(2009).

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bern-
stein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale
Visual Recognition Challenge, International Journal of
Computer Vision 115, 211 (2015), arXiv:1409.0575.

[42] L. Hertel, P. Sadowski, J. Collado, and P. Baldi, Sherpa
: Hyperparameter Optimization for Machine Learning
Models, Conference on Neural Information Processing
Systems (NIPS) (2018).

[43] J. Bergstra and Y. Bengio, Random search for hyper-
parameter optimization, Journal of Machine Learning
Research 13, 281 (2012).

http://arxiv.org/abs/1905.06841
https://arxiv.org/abs/1905.06841
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
https://doi.org/10.1175/JCLI3760.1
https://doi.org/10.1038/s41467-020-17142-3
https://doi.org/10.1038/s41467-020-17142-3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220{&}rep=rep1{&}type=pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1409.0575
https://openreview.net/forum?id=S1lX0KaE3m
https://openreview.net/forum?id=S1lX0KaE3m
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395

	Enforcing Analytic Constraints in Neural-Networks Emulating Physical Systems
	Abstract
	Introduction
	Theory
	Formulating the Constraints
	Enforcing the Constraints
	Linking Constraints to Performance

	Application
	Convective Parameterization for Climate Modeling
	Model and Data
	Formulating the Conservation Laws in a Neural Network
	Implementation
	Results

	Acknowledgments
	References

