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We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fun-
damental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the
spatial distribution and detectability of MW satellites, and marginalizes over uncertainties in the
mapping between galaxies and DM halos, the properties of the MW system, and the disruption
of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm
and yield the strongest cosmological constraints to date on particle models of warm, interacting,
and fuzzy dark matter. At 95% confidence, we report limits on (i) the mass of thermal relic warm
DM, mWDM > 6.5 keV (free-streaming length, λfs . 10h−1 kpc), (ii) the velocity-independent DM–
proton scattering cross section, σ0 < 8.8× 10−29 cm2 for a 100 MeV DM particle mass (DM–proton
coupling, cp . (0.3 GeV)−2), and (iii) the mass of fuzzy DM, mφ > 2.9×10−21 eV (de Broglie wave-
length, λdB . 0.5 kpc). These constraints are complementary to other observational and laboratory
constraints on DM properties.

PACS numbers: 95.35.+d, 95.85.Pw, 98.52.Wz
Keywords: dark matter, Galaxy: halo, galaxies: dwarf

Introduction.—In the concordance model of cosmology,
collisionless cold dark matter (CDM) makes up ∼ 25% of
the matter–energy density of the Universe [1]. While
dark matter (DM) has the potential to solve a number
of outstanding challenges in the Standard Model (SM)
of particle physics [2–4], the only positive empirical ev-
idence for DM comes from cosmological and astrophys-
ical observations. Furthermore, by studying the astro-
physical distribution of DM, it is possible to probe its
particle nature [5, 6]. Specifically, the formation, abun-
dance, and structure of gravitationally bound DM struc-
tures, known as “halos,” provide valuable information
about viable ranges of the DM particle mass, produc-
tion mechanism, and couplings to the SM. In particular,
the abundance and properties of the smallest DM halos
have the potential to indicate a departure from the CDM
paradigm [5, 6].

The smallest known DM halos host the ultra-faint
dwarf satellite galaxies of the Milky Way (MW) [7]. In
these systems, star formation is highly suppressed by
reionization and stellar feedback, leading to mass-to-light
ratios that are hundreds of times larger than the univer-
sal average [7, 8]. Ultra-faint satellite galaxies are thus
pristine laboratories for studying DM; in particular, the
abundance of these systems is a sensitive probe of any
DM physics that suppresses the formation or present-day
abundance of small halos [9–16].

Here, we study the following theoretical paradigms for
DM that affect the properties of the MW satellite popu-
lation:

(i) Warm dark matter (WDM) is produced in the early
Universe with a temperature of O(1 keV), although its
momentum distribution can be non-thermal. Any viable
WDM candidate must be cold enough to reproduce the
observed large-scale structure, but its non-negligible free-
streaming length suppresses the formation of the low-
mass halos that host MW satellite galaxies [9, 11–14, 17].
One of the most popular WDM candidates is a sterile
neutrino [18, 19].

(ii) Interacting dark matter (IDM) couples strongly
enough to the SM to be heated by interactions with the
photon–baryon fluid before recombination. This colli-
sional damping washes out small-scale structure, even if
the DM is produced non-thermally [20–22]. DM–nucleon
interactions arise in generalizations of the weakly-
interacting-massive-particle (WIMP) scenario [23–25],
and the impact of DM–radiation interactions on low-mass
halos has also been studied [15, 26, 27]. Here, we con-
sider a velocity- and spin-independent DM–proton cou-
pling, cp.

(iii) Fuzzy dark matter (FDM) consists of an ultra-light
boson with a sufficiently small mass, O(10−22 eV), such
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that its de Broglie wavelength is comparable to the sizes
of dwarf galaxies, O(1 kpc); this inhibits the formation
of low-mass halos due to the uncertainty principle [28–
31]. Ultra-light axions constitute one popular class of
FDM [32].

In this Letter, we use novel measurements and model-
ing of the MW satellite galaxy population to constrain
each DM paradigm described above. Specifically, we
combine a census of MW satellites [33] from the Dark En-
ergy Survey (DES; [34]) and Pan-STARRS1 (PS1; [35])
with a rigorous forward-modeling framework [36] to fit
the position-dependent MW satellite luminosity function
in each of these DM paradigms. This procedure fully
incorporates inhomogeneities in the observed MW satel-
lite population and marginalizes over uncertainties in the
mapping between MW satellite galaxies and DM halos,
the efficiency of subhalo disruption due to the MW disk,
and the properties of the MW system.

Our analysis yields stringent constraints on each DM
paradigm based on the abundance of observed MW satel-
lites. These limits are complementary to constraints
from the Lyman-α forest [37–40], strongly-lensed sys-
tems [41, 42], and MW stellar streams [43]. Our results
imply that CDM is consistent with astrophysical obser-
vations down to the smallest currently accessible scales
(k ∼ 40hMpc−1) and strongly reinforce previous work
demonstrating that there is no discrepancy between the
number of MW satellites predicted by CDM and current
observations [44]. Throughout this work, we fix cosmo-
logical parameters at h = 0.7, Ωm = 0.286, ΩΛ = 0.714,
σ8 = 0.82, ns = 0.96 [45].

Analysis Overview.—Before discussing our treatment
of each DM paradigm in detail, we describe the main
components of our analysis used to connect non-CDM
scenarios to the observed MW satellite population. For
each paradigm, we assume that the non-CDM compo-
nent constitutes the entirety of the DM. Fig. 1 illustrates
how our analysis proceeds: non-CDM physics suppresses
the linear matter power spectrum on small scales (left
panel), which manifests as an underabundance of subha-
los (middle panel) and faint MW satellite galaxies (right
panel) relative to CDM predictions.

Transfer function. The linear matter power spectrum,
normalized to that of CDM, is used to generate initial
conditions for simulations of structure formation. In par-
ticular, the transfer function is defined as

T 2(k) ≡ PDM(k)

PCDM(k)
, (1)

where k is the cosmological wavenumber, PCDM(k) is
the CDM linear matter power spectrum, and PDM(k)
is the linear matter power spectrum of a non-CDM
model [46]. PDM(k) is obtained by integrating the rel-
evant Boltzmann equation (which may include DM–SM

interactions) given the initial DM phase-space distribu-
tion. The left panel of Fig. 1 illustrates the transfer func-
tion for the three DM paradigms we consider.

It is convenient to define the half-mode scale, khm, as
the wavenumber satisfying T 2(khm) = 0.25 [47]. The
corresponding half-mode mass,

Mhm =
4π

3
Ωmρ̄

(
π

khm

)3

, (2)

is a characteristic mass scale below which the abundance
of DM halos is significantly suppressed relative to CDM.
Here, ρ̄ is the critical density of the Universe today.

Subhalo mass function (SHMF). The abundance of
subhalos within the virial radius of the MW is expressed
as the cumulative number of subhalos as a function of
subhalo mass, M . We follow [22] by using peak virial
mass, defined according to the Bryan-Norman overden-
sity [48] with ∆vir ' 99.2 (consistent with our cosmolog-
ical parameters). We define(

dNsub

dM

)
DM

≡ fDM(M,θDM)

(
dNsub

dM

)
CDM

, (3)

where fDM(M,θDM) is the suppression of the SHMF rel-
ative to CDM and θDM are DM model parameters; both
fDM and θDM depend on the DM model in question. The
middle panel of Fig. 1 shows SHMF suppression for the
three DM paradigms we consider.

MW satellite model. Here, we describe the additions
to our MW satellite model pertaining to the non-CDM
paradigms described above. We comprehensively discuss
the underlying galaxy–halo connection model in the Sup-
plemental Material. We combine the SHMF suppression
in Eq. (3) with a state-of-the-art satellite modeling frame-
work [36] to predict the abundance of observed MW satel-
lites in each DM paradigm. Our modeling framework
combines cosmological zoom-in simulations of two ha-
los from [49]—which are chosen to have masses,
concentrations, and assembly histories similar to
those inferred for the MW halo and include realistic
analogs of the Large Magellanic Cloud system—with a
statistical model of the galaxy–halo connection in order
to populate subhalos with satellite galaxies.

We implement SHMF suppression by multiplying the
detection probability of each mock satellite, which in-
cludes terms that model tidal disruption due to the MW
disk, the efficiency of galaxy formation, and observa-
tional detectability, by a factor of fDM(M,θDM), fol-
lowing [22, 50]. This procedure assumes that the shape
of the observed radial satellite distribution (which our
model predicts reasonably well; [36]) is unchanged in al-
ternative DM scenarios, which is consistent with results
from cosmological WDM simulations of MW-mass ha-
los [51, 52]. The validity of this assumption is less certain
for FDM because dynamical friction operates differently
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FIG. 1. Left panel : Transfer functions for the WDM (orange), IDM (blue), and FDM (magenta) models that are ruled
out by our analysis at 95% confidence, corresponding to, mWDM = 6.5 keV, σ0 = 8.8 × 10−29 cm2 (for DM particle mass
mχ = 100 MeV), and mφ = 2.9× 10−21 eV, respectively. These constraints are marginalized over our MW satellite model and
the properties of the MW system. Middle panel : SHMF suppression relative to CDM for each ruled-out non-CDM model. The
vertical dashed line indicates the 95% confidence upper limit on the lowest-mass halo inferred to host MW satellite galaxies
[36]. Note that the IDM SHMF is assumed to be identical to the WDM SHMF in our analysis, and is offset slightly for visual
clarity. Right panel : Predicted MW satellite galaxy luminosity functions for each ruled-out non-CDM model compared to DES
and PS1 observations, evaluated at the best-fit MW satellite model parameters from [36]. The shaded band illustrates the
uncertainty of our WDM prediction due to the stochasticity of our galaxy–halo connection model and the limited number of
simulations used in our analysis; the size of this uncertainty is very similar to that in CDM and the other alternative DM
models shown. This panel is a simple one-dimensional representation of our MW satellite and DM model fit to the luminosity,
size, and spatial distribution of satellites in the DES and PS1 survey footprints. The comparison of our CDM model to data
is described in [36], and full posterior distributions for our non-CDM analyses are provided in the Supplemental Material.

for wave-like versus particle DM [53], although this re-
sults in negligible differences in disruption timescales for
the ∼ 108 M� subhalos that drive our constraints [30].
The right panel of Fig. 1 shows the predicted satellite lu-
minosity function for each non-CDM model under consid-
eration evaluated with model parameters that are ruled
out at 95% confidence.

Fitting procedure. We fit predicted satellite popula-
tions to the observed satellite population from DES and
PS1 using the observational selection functions derived
in [33], assuming that satellite surface brightness is dis-
tributed according to a Poisson point process in each sur-
vey footprint [36, 54]. We use the Markov Chain Monte
Carlo (MCMC) code emcee [55] to simultaneously fit for
seven parameters governing the galaxy–halo connection,
one parameter governing the impact of the MW disk on
subhalo disruption, and one parameter governing the im-
pact of the DM model in question, which we express as
a subhalo mass scale. In particular, our thermal relic
WDM constraint is derived by fitting for Mhm, and our
FDM limit is derived by fitting for a characteristic mass
scale M0. Further details on our fitting procedure are
provided in the Supplemental Material.

Subhalo abundance is known to scale linearly with host
halo mass [49], and we assume that satellite luminosity
is a monotonic function of subhalo mass, modulo scatter
[36]. We therefore expect a higher-mass MW host halo
to yield weaker constraints on non-CDM models, because

observed satellites would inhabit correspondingly higher-
mass subhalos. The average virial mass of the host halos
in our two realistic MW-like simulations is 1.4×1012 M�,
which is consistent with the 95% confidence range for the
virial mass of the MW halo inferred from Gaia measure-
ments of satellite kinematics [56, 57]. To be conservative,
we account for the uncertainty in MW halo mass on our
DM constraints by assuming that the mass scale describ-
ing the suppression of the SHMF in each DM paradigm
is linearly related to the virial mass of the MW halo, fol-
lowing the scaling for minimum halo mass derived in [36].
In particular, we multiply the upper limit on the char-
acteristic mass scale in each of our non-CDM fits by the
ratio of the largest allowed MW halo mass to the average
host halo mass in our simulations. We validate this pro-
cedure by fitting the observed satellite population using
each of our two MW-like simulations separately, which
yields reasonable agreement with the linear scaling ex-
pectation. This conservative scaling mitigates the largest
uncertainty associated with the limited statistics of our
two realistic simulations.

In summary, our fit to the MW satellite population in-
corporates both intrinsic inhomogeneities in the spatial
distribution of MW satellites and those introduced by
the varying coverage and depth of current surveys. We
assume that alternative DM physics only modifies the
SHMF, via Eq. (3), and we report 95% confidence limits
on DM model parameters that are marginalized over un-
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certainties in our MW satellite model and the properties
of the MW system.

WDM Analysis. Thermal relic WDM with particle
mass, mWDM, has been studied extensively in the litera-
ture (e.g., [17, 58]) and serves as a benchmark model for
our analysis.

Transfer function. The transfer function for thermal
relic WDM is given as a function of mWDM by [58]. This
transfer function is commonly assumed in cosmological
studies of WDM and facilitates a well-defined compar-
ison to other small-scale structure results [37, 38, 41–
43]. However, the simple thermal relic transfer func-
tion is inadequate to describe specific particle models of
WDM, such as resonantly-produced sterile neutrinos [59].
Thus, constraints on specific DM candidates must be in-
ferred using transfer functions appropriate for the parti-
cle model in question, as we discuss below.

SHMF. Several authors have implemented the thermal
relic WDM transfer function from [58] in cosmological
zoom-in simulations to estimate the suppression of the
SHMF in MW-mass host halos [17, 47, 52, 60]. These
results depend on the algorithm used to remove spurious
halos [60, 61], and therefore vary among studies. Follow-
ing [62], SHMF suppression for thermal relic WDM can
be expressed as

fWDM(M,mWDM) =

[
1 +

(
αMhm(mWDM)

M

)β]γ
, (4)

where α, β, and γ are constants, and Mhm is related to
mWDM in our fiducial cosmology via

Mhm(mWDM) = 5× 108
(mWDM

3 keV

)−10/3

M�. (5)

To facilitate comparison with recent WDM constraints
from analyses of the MW satellite population [22], strong
gravitational lenses [41, 42], and stellar streams [43], we
adopt the SHMF from [17], which corresponds to Eq. (4)
with α = 2.7, β = 1.0, and γ = −0.99. We note
that the recent estimate of the SHMF from [62]—which
specifically models resonantly-produced sterile neutrino
WDM—is significantly less suppressed than the thermal
relic SHMF from [17]. Thus, our fiducial WDM con-
straint only applies directly to thermal relic DM.

Fitting procedure. We implement Eq. (4) in our fit
to the MW satellite population to obtain a marginalized
posterior distribution over Mhm. In particular, we fit
for log10(Mhm) using a uniform prior on this logarithmic
quantity, and we translate the resulting limit to mWDM

using Eq. (5). We translate our thermal relic WDM limit
into constraints on resonantly-produced sterile neutrinos
by following [63, 64]. Specifically, we analyze sterile neu-
trino transfer functions over a grid of mass and mix-
ing angle values [65], and we constrain sterile neutrino
models that produce transfer functions which are strictly

more suppressed than our 95% confidence ruled-out ther-
mal relic WDM model. This procedure is described in
detail in the Supplemental Material.
IDM Analysis. Our treatment of IDM follows the

prescription of [22]. For concreteness, we focus on the
case of velocity-independent DM–proton scattering.
Transfer function. Following [22], the transfer function

in our fiducial IDM model is obtained using the modified
version of the Boltzmann solver CLASS described in [23–
25], which we use to evolve linear cosmological perturba-
tions in the presence of velocity-independent DM–proton
interactions. These interactions are described by the
velocity-independent scattering cross section, σ0, and the
DM particle mass, mχ. As noted in [22], transfer func-
tions for this model are very similar to those of thermal
relic WDM, modulo dark acoustic oscillations that occur
at very small scales and are significantly suppressed for
our parameter space of interest.
SHMF. Because cosmological zoom-in simulations in-

cluding DM–proton scattering have not been performed,
we follow [22] by mapping the SHMF suppression of IDM
to that of WDM based on the correspondence of the
transfer functions. In particular, we match the half-mode
scales in the transfer functions to construct a relation
between mWDM and (σ0,mχ), and we assume that the
IDM SHMF is identical to the corresponding thermal
relic WDM SHMF from [17]. This procedure neglects
late-time DM–proton scattering, which has a negligible
impact on subhalo abundances in our IDM model, even
in regions with high baryon densities.
Fitting procedure. Following [22], we use the mapping

procedure described above to translate our 95% confi-
dence limit on thermal relic WDM into limits on σ0 for
several values of mχ in our fiducial IDM model.
FDM Analysis. Finally, we provide details on

each step for the FDM paradigm. We focus on the
case of ultra-light scalar field DM with negligible self-
interactions and SM couplings.
Transfer function. The FDM transfer function is given

as a function of the FDM mass, mφ, by [28]. We note that
this transfer function features steeper power suppression
than thermal relic WDM for a fixed half-mode scale.
SHMF. We assume that the FDM SHMF suppression

takes the form of Eq. (3), and we fit the results of the
semi-analytic model in [30, 31] with a function of the
form

fFDM(M,mφ) =

[
1 +

(
M0(mφ)

M

)β̃(mφ)
]γ̃(mφ)

, (6)

where β̃(mφ) and γ̃(mφ) are provided in the Supplemen-
tal Material. The characteristic subhalo mass scale M0

is related to the FDM mass via [66]

M0(mφ) = 1.6× 1010
( mφ

10−22 eV

)−4/3

M�. (7)
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Dark Matter Paradigm Parameter Constraint Derived Property Constraint

Warm Dark Matter Thermal Relic Mass mWDM > 6.5 keV Free-streaming Length λfs . 10h−1 kpc

Interacting Dark Matter Velocity-independent
DM–Proton Cross Section

σ0 < 8.8× 10−29 cm2 DM–Proton Coupling cp . (0.3 GeV)−2

Fuzzy Dark Matter Particle Mass mφ > 2.9× 10−21 eV de Broglie Wavelength λdB . 0.5 kpc

TABLE I. Constraints on the WDM, IDM, and FDM paradigms from observations of MW satellite galaxies. Limits for each
non-CDM model are derived by assuming that it constitutes the entirety of the DM. The first column lists the DM paradigm, the
second column describes the particle physics parameters constrained by this analysis, the third column lists the corresponding
constraints at 95% confidence, the fourth column describes the derived property constrained for each DM model, and the fifth
column lists constraints on the derived parameters. Limits on the DM–proton scattering cross sections depend on the DM
particle mass, mχ (see Fig. 2); for simplicity, we present our constraint for mχ = 100 MeV.

The SHMF suppression in Eq. (6) encapsulates the ef-
fects of tidal stripping on subhalos with solitonic cores,
which was explicitly included by [30, 31]. This SHMF
suppression is significantly less severe than that esti-
mated from the FDM simulations in [66]. As described
in the Supplemental Material, using the SHMF from [66]
in our fit yields a limit on the FDM mass that is roughly
three times more stringent than our fiducial result. This
confirms that the FDM SHMF is a key theoretical uncer-
tainty that must be addressed [29].

Fitting procedure. We implement the SHMF in Eq. (6)
in our fit to the MW satellite population to obtain a
marginalized posterior distribution over M0. In partic-
ular, we fit for log10(M0) using a uniform prior on this
logarithmic quantity, and we translate the resulting limit
to mφ using Eq. (7). We note that our procedure for
constraining FDM uses the detailed shape of the SHMF
suppression in this model, rather than mapping the half-
mode scale of the FDM transfer function to that of ther-
mal relic WDM as in [22] or bounding the FDM SHMF
by ruled-out thermal relic WDM SHMFs as in [67]. This
is necessary because both the shape of the FDM trans-
fer function and the resulting suppression of the SHMF
differ in detail from thermal relic WDM (see Fig. 1).

Results.—Table I presents our constraints on the WDM,
IDM, and FDM paradigms. We describe these results
below and translate the limits into constraints on specific
models corresponding to each DM paradigm.

(i) WDM. Our fit using the thermal relic WDM SHMF
suppression from [17] yields Mhm < 3.0 × 107 M�, or
mWDM > 7.0 keV, at 95% confidence. Linear scaling with
MW halo mass yields our fiducial constraint of Mhm <
3.8 × 107 M�, corresponding to mWDM > 6.5 keV. This
translates to an upper limit on the free-streaming length
of λfs . 10 h−1 kpc, corresponding to the virial radii of
the smallest halos that host MW satellite galaxies, and
improves on previous mWDM constraints from the MW
satellite population by a factor of ∼ 2 [22].

Our constraint on thermal relic WDM translates to

a lower limit of 50 keV on the mass of a non-resonant
Dodelson–Widrow sterile neutrino [58, 77]. We also
translate our thermal relic WDM limit into constraints on
the mass and mixing angle of resonantly-produced ster-
ile neutrinos assuming a Shi–Fuller production mecha-
nism [78], following the conservative procedure described
above. As shown by the red exclusion region in the left
panel of Fig. 2, our analysis rules out nearly the entire
remaining parameter space for resonantly produced ster-
ile neutrinos in the Neutrino Minimal Standard Model
[73] at greater than 95% confidence.1 In addition, we ro-
bustly rule out the resonantly produced sterile neutrino
interpretation of the 3.5 keV X-ray line [68].

(ii) IDM. Mapping our mWDM > 6.5 keV constraint
to the DM–proton scattering model following the
procedure in [22] yields constraints on the velocity-
independent interaction cross section of (7.0×10−30, 2.6×
10−29, 8.8 × 10−29, 1.7 × 10−27) cm2 for DM particle
masses of (10−5, 10−3, 10−1, 10) GeV at 95% confidence.
As shown by the red exclusion region in the right panel of
Fig. 2, these constraints are highly complementary to di-
rect detection limits, particularly at low DM masses [22].

We note that these constraints scale as m
1/4
χ (mχ) for

mχ � 1 GeV (mχ � 1 GeV). At a DM mass of 100 MeV,
our limit translates into an upper bound on the DM–
proton coupling of cp . (0.3 GeV)−2 [23].

Despite our conservative marginalization over MW
halo mass, these results improve upon those in [22] by
a factor of ∼ 3 at all DM masses. This is stronger than
the improvement expected from the analytic prediction
for cross section constraints derived in [22] due to a more
precise determination of the SHMF, resulting from the
sky coverage and sensitivity of DES and PS1.

Several complementary astrophysical and cosmological
measurements probe the DM–proton scattering cross sec-

1 A small region of parameter space is not excluded at the lowest
viable mixing angles and ms & 30 keV.
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FIG. 2. Exclusion regions for WDM and IDM models from our analysis of MW satellites observed with DES and PS1
(red) compared to previous constraints from classical and SDSS satellites [22] (blue) and other experimental results. Left
panel : Constraints on the mass and mixing angle of resonantly-produced sterile neutrino DM. These constraints are derived
by finding mass and mixing angle combinations that suppress the linear matter power spectrum more strongly than the
mWDM = 6.5 keV thermal relic ruled out at 95% confidence by our analysis. The black point with error bars shows the sterile
neutrino interpretation of the 3.5 keV X-ray line [68]. The dark gray region is ruled out by dwarf galaxy internal dynamics [69],
and the gray contour shows X-ray constraints [70–72]. Solid black lines indicate regions of parameter space in which resonantly-
produced sterile neutrinos cannot constitute all of the DM in the Neutrino Minimal Standard Model [63, 73]. Right panel :
Constraints on the interaction cross section and DM mass for velocity-independent DM–proton scattering. Green contours
show cosmological limits from the CMB [23, 25] and the Lyman-α forest [74]. Light gray contours show experimental limits
from the X-ray Quantum Calorimeter [75] and direct detection results as interpreted by [76].

tion. Stringent limits have been derived by reinterpret-
ing direct detection constraints in the context of cosmic
ray upscattering [79]. We do not show these results in
Fig. 2 because they constrain the DM–proton scattering
at relativistic energies, which precludes a straightforward
mapping to the velocity-independent cross section con-
strained here. The IDM model we consider contributes
to the energy density of relativistic species at Big Bang
Nucleosynthesis, which sets a lower on its mass that de-
pends on the spin statistics of the DM particle [80–82].
Understanding the interplay of these results with our lim-
its is an important area for future work.

(iii) FDM. We obtain M0 < 1.4× 108 M� at 95% confi-
dence from our fiducial FDM fit. Applying linear MW-
host mass scaling yields M0 < 1.8× 108 M� at 95% con-
fidence, or mφ > 2.9 × 10−21 eV. This translates to
an upper limit on the de Broglie wavelength of λdB .
0.5 h−1 kpc, roughly corresponding to the sizes of the
smallest MW satellite galaxies. Thus, the 10−22 eV FDM
model invoked to reconcile the apparent mismatch be-
tween the predicted and observed inner dark matter den-
sity profiles of dwarf galaxies [29], and to fit the inter-
nal dynamics of low-surface-brightness [83, 84] and ultra-
diffuse [85] galaxies, is strongly disfavored by MW satel-
lite abundances.

To connect to particle models of FDM, we plot this
limit in the well-motivated parameter space of ultra-light

axion mass versus axion–photon coupling in Fig. 3. For
the range of axion–photon couplings that we consider,
this mixing has a negligible effect on structure formation.
We reiterate that our constraint was derived assuming a
light scalar field without self-interactions; this assump-
tion may be violated in specific ultra-light axion models.
Although our analysis and Lyman-α forest studies ex-
clude a similar region of parameter space [39, 40], our
work probes structure on complementary physical scales
with distinct theoretical and observational systematics.

Discussion.—In this Letter, we used a state-of-the-art
model of the MW satellite galaxy population to place
stringent and robust limits on three fundamental DM
paradigms: WDM, IDM, and FDM. Although some of
these alternative DM models gained popularity by solv-
ing apparent small-scale structure “challenges” facing
CDM, recent observational and theoretical advances have
reversed this scenario. In particular, astrophysical and
cosmological observations of the smallest DM structures
are now among the strongest constraints on the micro-
physical properties of DM.

This analysis improves upon previous work by using
MW satellite observations over nearly the entire sky and
rigorously accounting for both satellite detectability and
uncertainties in the galaxy–halo connection. Our con-
straints are comparable in sensitivity to Lyman-α forest,
strong lensing, and stellar stream perturbation analyses.
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Future cosmic surveys promise to further improve these
measurements and to enable a detailed comparisons to
the internal dynamics of these galaxies [92, 93].

As the observational data improve, there are
several uncertainties in the current modeling
framework that are important to address. In par-
ticular, our use of only two realistic MW simula-
tions limits the range of host halos and subhalo
populations that enter our analysis; sampling a
wider range of host halo masses, formation histo-
ries, and environments will improve the accuracy
and precision of DM constraints derived from
MW satellite galaxies. We describe other model
uncertainties in the Supplemental Material.

The breadth of DM models constrained by observa-
tions of MW satellites is particularly important given the
growing interest in a wide range of theoretical possibil-
ities following non-detections in collider, direct, and in-
direct searches for canonical WIMPs. In addition to the
three DM paradigms considered in this work, small-scale
structure measurements are also sensitive to the initial
DM velocity distribution in non-thermal production sce-
narios [94], the DM formation epoch [95, 96], the DM
self-interaction cross section [97–100], and the DM par-
ticle lifetime [10, 101].

Future work could generalize our approach by mea-
suring deviations in the small-scale linear matter power
spectrum relative to a baseline CDM scenario, rather
than setting constraints in the context of particular DM

models. Features in the power spectrum on extremely
small scales are a hallmark of many inflationary mod-
els [102, 103], and it is conceivable that DM substructure
measurements can be used to infer the nature of the cor-
responding primordial density fluctuations.
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Giguère, K. El-Badry, A. Lamberts, E. Quataert, et al.,
MNRAS 487, 1380 (2019), 1806.04143.

[105] E. Applebaum, A. M. Brooks, C. R. Christensen,
F. Munshi, T. R. Quinn, S. Shen, and M. Tremmel,
arXiv e-prints arXiv:2008.11207 (2020), 2008.11207.

[106] S. R. Hinton, JOSS 1, 00045 (2016).


	Milky Way Satellite Census. III. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies
	Abstract
	References


