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In recent experiments, the light-matter interaction has reached the ultra-strong coupling limit,
which can give rise to dynamical generalizations of spatial symmetries in periodically-driven sys-
tems. Here, we present a unified framework of dynamical-symmetry-protected selection rules based
on Floquet response theory. Within this framework, we study rotational, parity, particle-hole, chiral
and time-reversal symmetries and the resulting selection rules in spectroscopy, including symmetry-
protected dark states (spDS), symmetry-protected dark bands (spDB), and symmetry-induced trans-
parency (siT). Specifically, dynamical rotational and parity symmetries establish spDS and spDB
conditions; a particle-hole symmetry introduces spDSs for symmetry-related Floquet states and
also a siT at quasienergy crossings; chiral symmetry and time-reversal symmetry alone do not imply
spDS conditions, but can be combined to define a particle-hole symmetry. These symmetry condi-
tions arise from destructive interference due to the synchronization of symmetric quantum systems
with the periodic driving. Our predictions reveal new physical phenomena when a quantum system
reaches the strong light-matter coupling regime, important for superconducting qubits, atoms and
molecules in optical or plasmonic fields cavities, and optomechanical systems.

Introduction. Over the last few decades, the light-
matter interaction strength has been pushed to the ultra-
strong coupling regime in opto-mechanical systems [1],
quantum dots, atoms and molecules in optical or plas-
monic cavities [2–6], and superconducting quantum cir-
cuits [7, 8]. As standard nonlinear perturbation theory [9]
becomes unfeasible under these conditions, Floquet re-
sponse theory has been developed recently, describing
systems which are subject to a strong, but time-periodic
driving field (of frequency Ω), and a weak, but arbi-
trary probe field [10–13]. For a monochromatic probe
of frequency ωp, system observables generate response
frequencies ωp + nΩ termed Floquet bands [14].

Spatial symmetries give rise to appealing physical
properties. Inversion symmetry results in selection rules
for dipole transitions; particle-hole, chiral and time-
reversal symmetries establish the so-called periodic ta-
ble, a classification scheme for topological insulators [15–
17]; and symmetries have an essential impact on trans-
port properties [18–24]. For periodically-driven systems,
these spatial symmetries can be generalized to dynamical
symmetries, which can give rise to a generalized periodic
table for topological insulators [25, 26], and new control
mechanism [27–33]. A dynamical-parity symmetry can
induce coherent destruction of tunneling [34], and even
harmonic generation [35].

In this letter, we introduce a unified conceptual frame-
work of selection rules based on general dynamical sym-
metries of periodically-driven quantum systems, as de-
scribed by Floquet response theory [36]. Physically,
the synchronization of symmetric quantum systems with
the periodic driving gives rise to destructive interfer-
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TABLE I. Overview of the spectroscopic signatures of dynam-
ical rotational symmetry (RS), particle-hole symmetry (PHS),
parity symmetry (PS), chiral symmetry (CS), and time-
reversal symmetry (TRS). The signatures include symmetry-
protected dark states (spDS), symmetry-protected dark band
(spDB), symmetry-induced transparency (siT), and acciden-
tal dark states (aDS). The right column lists example models.

Symmetry Effect Example

RS spDS benzene-ring (Fig. 1)
spDB

PS spDS two-level sys. (Fig. 3)
spDB

PHS spDS dimer (Fig. 2)
2 × PHS siT two-level sys. (Fig. 3)

TRS none
CS none

none aDS all (Figs. 1,2 ,3)

ence effects in Floquet space and thus to forbidden tran-
sitions between Floquet states. This set of forbidden
transitions define the symmetry-protected selection rules
that are robust against symmetry-preserving parame-
ter variations. Specifically, there are four types of for-
bidden transitions ordered in the increasing degree of
complexity: (i) accidental dark states (aDS), appear-
ing for a specific combination of system parameters; (ii)
symmetry-protected dark states (spDS), which refers to
the symmetry-protected absence of a complete transition
line, similar to symmetry-protected excitations of topo-
logical band structures; (iii) symmetry-protected dark
bands (spDB), which refers to the absence of a com-
plete Floquet band, due to a combination of spDS; (iv)
symmetry-induced transparency (siT), which refers to
the vanishing transition intensity at the degeneracy of
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quasi-energies. While aDS is not symmetry-related, we
establish symmetry-protected selection rules for impor-
tant dynamical symmetries, which are classified in ta-
ble I.

Floquet response theory. We apply a semiclassical ap-
proach based on the general Hamiltonian

Ĥ(t) = Ĥ0(t) +

∫ ∞
0

dω
[
λV̂
(
âω + â†ω

)
+ ωâ†ωâω

]
, (1)

where Ĥ0(t) = Ĥ0(t + τ) describes a system driven by
a periodic classical electromagnetic field of frequency
Ω = 2π/τ . The probe field is given by a continuum of
photonic operators a†ω with frequencies ω, which are cou-

pled via the dipole transition operator V̂ with strength
λ to the driven system. The physical properties of Ĥ0(t)
are determined by the Floquet equation[

Ĥ0(t)− i d
dt

]
|uµ(t)〉 = εµ |uµ(t)〉 , (2)

where |uµ(t)〉 = |uµ(t+ τ)〉 and εµ are the correspond-
ing Floquet states and quasienergies, which generalize
the concept of eigenstates and eigenenergies of time-
independent systems. It is implicitly assumed that the
driven system is weakly dissipative, such that for long
times it approaches the stationary state

ρ(t) =
∑
µ

pµ |uµ(t)〉 〈uµ(t)| , (3)

which is diagonal in the Floquet basis and thus synchro-
nizes with the driving, ρ(t) = ρ(t + τ). Equation (3)
is consistent with the Floquet-Redfield equation [37–40]
describing periodically-driven open quantum systems. In
the model calculations, we assume the special distribu-
tion pµ ∝ e−βεµ , i.e., a Floquet-Gibbs distribution, but
all our predictions hold even if the Floquet-Gibbs dis-
tribution breaks down [40]. Strongly dissipative systems
could be addressed by generalizing our approach to non-
Hermitian Hamiltonians [17] or via the polaron transfor-
mation [41].

The interaction of Ĥ0(t) with the probe field is treated
using the input-output formalism and a perturbation
expansion for small λ. The input field consists of a
bichromatic probe field (of frequencies ωp,1 and ωp,2 =
ωp,1 + nΩ, integer n). As shown separately [13], the
intensity change of the output field at frequency ωp,2

proportional to the coherence
〈
â†ωp,2

âωp,1

〉
is given by

∆Icoh(ωp,2) = −iχ̃n(ωp,1)
〈
â†ωp,2

âωp,1

〉
+ c.c. , where the

susceptibility χ̃n(ωp,1) can be evaluated using Floquet
response theory and reads

χ̃n(ωp,1) = iλ2
∑
ν,µ,m

V
(−n−m)
ν,µ V

(m)
µ,ν (pν − pµ)

εµ − εν +mΩ− ωp,1 − iγ(m)
ν,µ

. (4)

The index n denotes the Floquet band, which describes

non-elastic scattering of the probe field, and the dynam-
ical dipole matrix elements read

V
(n)
λ,µ =

1

τ

∫ τ

0

〈uλ(t)| V̂ |uµ(t)〉 e−inΩtdt. (5)

The parameters γ
(m)
ν,µ have been added phenomenologi-

cally and denote dephaseings rates.

Unified conceptual framework of dynamical-symmetry
protected selection rules. We consider the following class
of symmetry operations [25]

Σ̂

[
Ĥ0(tS + βSt)− i

d

dt

]
Σ̂−1 = αS

[
Ĥ0(t)− i d

dt

]
, (6)

where Σ̂ is a time-independent spatial operator. By spec-
ifying Σ̂, tS, and (αS , βs = ±1) one can define a set of
dynamical symmetries. Applying Eq. (6) to the Floquet
equation Eq. (2) one can identify relations between Flo-
quet states µ and µ′

|uµ′(t)〉 = π(S)
µ Σ̂ |uµ(tS + βSt)〉 , (7)

which can be used to evaluate the dynamical dipole el-
ements in Eq. (5). Imposing an invariance condition for

the transition dipole operator Σ̂†V̂ Σ̂ = α
(S)
V V̂ and us-

ing Eq. (7), we investigate symmetry-protected selection
rules for rotational, parity, particle-hole, chiral and time-
reversal symmetries.

Within the unified framework, we can establish
symmetry-protected selection rules, which are robust
against symmetry-conserved variations and unique for
strong-light matter interactions. Among others, we in-
vestigate dark states, which are defined by the condi-

tion V
(m)
ν,µ = 0, such that the corresponding resonances

in Eq. (4) vanish. This condition not only generalizes
the dark state condition in the standard response theory
to the strong-coupling regime for n = 0, but also intro-
duces distinct dark states effects for n 6= 0. All selection
rules are a consequence of destructive interference due to
the synchronization of the system state with the periodic
driving: (i) The dark state condition can be fulfilled by
special combinations of parameters, which we denote as
aDS, or (ii) as a consequence of a symmetry, which we
denote as spDS. (iii) An entire Floquet band can vanish
because χ̃n(ωp) = 0 for specific n, which we denote as
a spDB. (iv) By analyzing the susceptibility in terms of
Eq. (7), we establish the condition for the siT, which is
due to a destructive interference of two transitions with
V

(m)
ν,µ 6= 0.

Rotational symmetry. With αS = βS = 1, a uni-
tary Σ̂ = R̂, and tS = tR = τ

N with a positive inte-
ger N , Eq. (6) defines a dynamical rotational symme-
try [42], which gives rise to the eigen equation |uµ(t)〉 =

π
(R)
µ R̂ |uµ(t+ tR)〉 with eigenvalues π

(R)
µ = ei2πmµ/N

and integer mµ = {0, N − 1}. As shown in detail in the

SI, for a dipole transition operator with R̂†V̂ R̂ = α
(R)
V V̂
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FIG. 1. (a) Benzene driven by circulary-polarized light propa-
gating perpendicular to the ring plane. The probe field is po-
larized perpendicular to the plane so that it does not destroy
the 6-fold dynamical rotational symmetry. (b) Quasienergies
of benzene for the tunneling constant J0 = 0.05Ω and onsite
energy E0 = 0.45Ω. (c) Susceptibility χ̃0(ωp) (color gradient).
Rotational spDS are marked by dashed lines. One transition
vanishes at the location of the aDS. The depahsing rates in

all figures are γ
(m)
ν,µ = 0.001Ω.

with α
(R)
V = ±1, the dynamical rotational symmetry es-

tablishes a sufficient condition for spDS

V̂ (m)
ν,µ ∝

{
1 if ei

2π
N (mµ−mν+m)α

(R)
V = 1,

0 else.
(8)

Applying Eq. (8) to evaluate the susceptibility in Eq. (4),
we find

χ̃n(ωp) =

{
1 if ei

2π
N n = 1,

0 else,
(9)

which is the condition for the complete disappearance
of Floquet band n, i.e., a spDB. Physically, this effect
appears as the stationary state Eq. (3) synchronizes with
the driving field, such that the density matrix adopts
the dynamical rotational symmetry, i.e., ρ(t + n/Nτ) =

R̂nρ(t)R̂†n.

As an example, we consider a benzene ring driven by
circular-polarized light sketched in Fig. 1(a), which is
described by a tight-binding Hamiltonian

Ĥ0(t) =

6∑
j,j′=1

Jj,j′ |ej〉 〈ej′ |+
6∑
j=1

[ifj(t) |ej〉 〈ej+1|+ h.c.] ,

where |ej〉 denotes the excitation on site j (defined mod-
ulo 6), Jj,j = E0 is the onsite energy, Jj,j′ = δj,j′±1J0 is

FIG. 2. (a) Sketch of the dimer model Eq. (11) with h1(t) =
fΩ cos(Ωt). (b) Quasienergy spectrum for J0/Ω = 0.05, r = 2
and ∆ = 0.2Ω. (c) The susceptibility |χ̃0(ωp)| is depicted as a
color gradient. spDS (marked by dashed lines) are generated
by a particle-hole symmetry.

FIG. 3. (a) Sketch of the ac-driven two-level system. (b)
Quasienergy spectrum for hx/Ω = 0.05. (c) The spectrum
of the susceptibility χ̃0(ωp) exhibits a siT and spDSs. Here,
p0 = 0.6 and p1 = 0.4 in Eq. (3) to highlight the siT.

the tunneling constant, and fj(t) = fΩ cos(Ωt + 2πj/6)
is the time-dependend tunneling strength with the driv-
ing amplitude fΩ. The driving terms are motivated by
the Peierls substitution describing a vectorial current-
gauge-field coupling j ·A(t) [43] with a circularly rotat-
ing vector potential A(t). The dipole transition operator
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V̂ =
∑N
j=1 d0 |ej〉 〈g| excites the ground state |g〉 to the

single-excitation manifold, whose quasienergies are de-
picted in Fig. 1(b). The stationary state is ρs(t) = |g〉 〈g|
in agreement with Eq. (3), i.e., a Floquet-Gibbs state for
low temperatures. A rotational symmetry is fulfilled for
N = 6 and R̂ =

∑n
j=1 |ej+1〉 〈ej |.

In Fig. 1(c) we depict the susceptibility χ̃0(ωp) of
the benzene model. The resonances of the dark states
defined by Eq. (8) are marked by dashed lines (opti-

cally invisible), and only two transitions, V̂
(0)
0,1 V̂

(0)
1,0 and

V̂
(1)
3,0 V̂

(−1)
0,3 , are visible. An aDS can be found for V̂

(0)
0,1 V̂

(0)
1,0

at fΩ = 1.5Ω. As a consequence of the spDB in Eq. (9),
only Floquet bands χ̃n(ωp) with n mod 6 = 0 appear.

Parity symmetry. A dynamical parity symmetry is a
specification of the dynamical rotational symmetry with
N = 2 and a Hermitian operator R† = R, such that the
spDS condition Eq. (8) and the spDB condition Eq. (9)
are equally valid. The spDSs will be illustrated for the
TLS in Eq. (13) along with the siT discussed below.

Particle-hole symmetry. A particle-hole symmetry is
defined for −αS = βS = 1, tS = tP = τN1/2N2 with

integers N1 ∈ {0, 1}, N2 ≥ 1, and Σ̂ = P̂ κ̂ with a uni-

tary operator P̂ and the complex conjugation operator
κ̂, such that P̂ Ĥ∗(t + tP )P̂ = −Ĥ(t). The particle-hole
symmetry establishes a symmetry between excitation and
deexcitation processes, and has its origin in fermionic
systems, where adding and removing quasiparticles re-
sults in physically equivalent behaviors. Here we use
the particle-hole symmetry in a general context. Us-
ing the particle-hole symmetry in Eq. (2), we find that
each Floquet state |uµ(t)〉 with quasienergy εµ has its

symmetry-related partner |uµ′(t)〉 = π
(P )
µ P̂ |uµ(t+ tP )〉∗

with energy εµ′ = −εµ and a gauge-dependent π
(P )
µ . For

tP = τ/(2N2) the particle-hole symmetry gives rise to a

rotational symmetry defined by R̂ = P̂ P̂ and tR = τ/N2,
such that the dark state selection rules of the rotational
symmetry apply. The particle-hole symmetry can give
rise to a distinct dark state condition. For a dipole

transition operator with P̂ †V̂ ∗P̂ = α
(P )
V V̂ , α

(P )
V = ±1,

tP = 0, τ/2, and P̂ ∗P̂ = 1, the particle-hole symmetry

results in V
(m)
µ,µ′ = α

(P )
V eimΩtP V

(m)
µ,µ′ for symmetry related

states µ, µ′, so that

V̂
(m)
µ,µ′ ∝

{
0 if α

(P )
V eimΩtP = −1; µ, µ′ sym. rel.

1 else,
(10)

as shown in detail in the SI. In contrast to Eq. (8), where
each transition can vanish for an appropriate m, only
transitions between symmetry-related states are affected
by Eq. (10).

To illustrate Eq. (10), we use the dimer model sketched
in Fig. 2(a), with the Hamiltonian given by

H0(t) = ∆
(
Âf,f − Âg,g

)
+ J0Âe1,e2

+ h1(t)
[
Âe1,f + Âg,e1 + rÂe1,e2

]
, (11)

where Âα,β ≡ |α〉 〈β|+ h.c., and g, e1, e2 and f label the
ground state, two single-excitation states and the double
excitation state, respectively. ∆ is the excitation gap, J0

is the tunneling constant, and h1(t) = fΩ cos(Ωt) is the
driving field. The r term enhances higher-order dipole el-

ements V m 6=0
µ,µ′ . The particle-hole symmetry is defined by

P̂ = Âg,f + Âe1,e1 − Âe2,e2 and tP = 0. The quasienergy
spectrum in Fig. 2(b) is symmetric with respect to E = 0.

The dipole transition operator is V̂ = Âe1,f + Âg,e1 , such

that P̂ †V̂ ∗P̂ = −V̂ . In Fig. 2(c), we depict the suscepti-
bility in Eq. (4). According to the above considerations,
the transitions between the particle-hole symmetry re-

lated pairs vanish, i.e., V
(m)
1,4 = V

(m)
4,1 = V

(m)
2,3 = V

(m)
3,2 = 0

for all m. These resonances are marked by dashed lines.
The other transitions not affected by the symmetry con-
strain remain visible in Fig. 2(c).

Symmetry-induced transparency. The particle-hole
symmetry can also give rise to a siT at the quasienergy
crossing εµ = εµ′ = 0 of symmetry related Floquet states
µ, µ′. While a spDS is generated by a vanishing dipole

element V
(n)
λ,µ = 0, the siT is generated by a destruc-

tive interference of two transitions with V
(n)
λ,µ 6= 0 . As

shown in the SI in detail, for two distinct particle-hole

symmetries P̂1 6= ±P̂2, P̂ 2
i = 1 and

[
P̂1, P̂2

]
= 0, the siT

condition reads

χ̃n(mΩ) ∝

{
0 if eimΩ(tP1

−tP2
) = 1; εµ = εµ′ = 0

1 else,
(12)

where tPi denote the reference times related to P̂i.
For illustration, we consider an ac-driven two-level sys-

tem (TLS) sketched in Fig. 3(a) and described by the
Hamiltonian

Ĥ0(t) =
hx

2
σ̂x +

fΩ

2
cos (Ωt) σ̂z, (13)

where σ̂x, σ̂z are the Pauli matrices, hx is the tunnel-
ing amplitude, and fΩ the driving strength. The TLS is
weakly dissipative, as in the spin-boson model, such that
it reaches the stationary state in Eq. (3). The dipole

transition operator in Eq. (1) is V̂ = σ̂x. For R̂ = σ̂x

and tR = τ/2, the two-level system exhibits a dynamical
parity symmetry defined above, which gives rise to coher-
ent destruction of tunneling effect at exact quasienergy
crossing, depicted in Fig. 3(b) at fΩ ≈ 2.4Ω [34, 44], and
enables the siT in the current context. Additionally, the
TLS exhibits spDSs and spDBs according to Eq. (8) and

Eq. (9) as V
(m)
µ,ν′ = 0 for even m because of the dynamical

parity symmetry.
For the TLS, a particle-hole symmetry is defined for

P̂1 = σ̂z and tP1 = τ/2, for hx = 0 a second particle hole

symmetry is given for P̂2 = 1 and tP2
= τ/2. As in this

case εµ = 0 and P̂iσ̂
∗
xP̂i = (−1)iσ̂x, siT with χ̃n(mΩ) = 0
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appears according to Eq. (12) and the response χ̃n(ωp)
is complete suppressed for all n. In Fig. 3(c) we con-
sider χ̃0(ωp) for a finite, but small hx � Ω, such that
the quasienergy degeneracy is lifted except of the cross-
ing, and the particle-hole symmetry P̂2 is slightly broken.
As a consequence, the siT is not complete, but scales as
χ̃n(mΩ) ∝ hx/Ω at the crossing.

Time-reversal and chiral symmetries. A time-reversal
symmetry (chiral symmetry) is defined by Eq. (6) for
αS = −βS = 1 (αS = βS = −1), arbitrary tS , and

Σ̂ = T̂ κ̂, (Σ̂ = Ĉ), where T̂ (Ĉ) is a unitary oper-
ator. As shown in the SI, neither time-reversal sym-
metry nor chiral symmetry alone implies spDSs. How-
ever, the combination of time-reversal symmetry and
chiral symmetry defines a particle-hole symmetry with
P̂ = ĈT̂ , and tP = tT − tC . When they further fulfill

tT − tC ∈ {0, τ/2}, Ĉ∗Ĉ = 1, T̂ ∗T̂ = 1, and
[
Ĉ, T̂

]
= 0,

such that P̂ ∗P̂ = 1, spDSs appear because of the particle-
hole symmetry. In general, the presence of any two sym-
metries out of particle-hole symmetry, chiral symmetry,
and time-reversal symmetry implies the existence of the
third one.

Conclusions. Using a unified conceptional framework
based on Flouqet response theory, we have predicted
selection rules in periodically-driven quantum systems,
namely accidental dark states, symmetry-protected dark
states, symmetry-protected dark bands, and symmetry-

induced transparency. The latter three effects are pro-
tected by symmetries, such that variations of symme-
try preserving parameters do not destroy them. These
symmetry-induced selection rules result from the destruc-
tive interference of a driven system synchronized to the
periodic driving. The different effects have been illus-
trated in three example systems fulfilling different sym-
metries, demonstrating the flexibility and generality of
our unified framework. The predicted selection rules are
valid even for more complicated and realistic systems,
as long as the corresponding dynamical symmetries are
fulfilled.

Our theoretical results are experimentally observable
in systems that can reach the strong-light matter cou-
pling regime such as cold-atom experiments [2] and su-
perconducting circuits [45–48]. For experiments with
molecules, strong driving fields are necessary to gen-
erate high-order Floquet bands but in cavity QED or
plasmonic fields the strong driving interaction condition
can be relaxed for molecules ensembles interacting col-
lectively with the light field [49, 50].
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j

∑
m fj

(
t−m τ

N

)
Â
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