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Liquids equilibrated below an onset condition share similar inherent states, while those above
that onset have inherent states that markedly differ. Although this type of materials memory was
first reported in simulations over 20 years ago, its physical origin remains controversial. Its absence
from mean-field descriptions, in particular, has long cast doubt on its thermodynamic relevance.
Motivated by a recent theoretical proposal, we reassess the onset phenomenology in simulations using
a fast hard sphere jamming algorithm and find it to be both thermodynamically and dimensionally
robust. Remarkably, we also uncover a second type of memory associated with a Gardner-like regime
of the jamming algorithm.

The state of a material is nominally the product of its
history, echoing both states and processes previously en-
countered. Yet equilibrium states are memoryless. Only
certain non-equilibrium processes allow information to
be stored, retained, and summoned back. Given the rich
out-of-equilibrium physics of glass formers, these mate-
rials exhibit a rich variety of memory types, and thus
broadly inform our understanding of the phenomenon.
Spin glass models, in particular, form the theoretical ba-
sis for both machine and biological learning [1–3]. Their
structural counteparts [4] form an even richer array of
memory types via out-of-equilibrium processes as varied
as shearing [5–7], heating cycles [8], and aging [9].

Inherent state memory, which relates an equilibrium
state to its nearest energy minima or jammed configura-
tion through a fast out-of-equilibrium quench [8, 10–12],
is one of the simplest memory types in glasses. Which
macroscopic properties of the original equilibrium state
can an inherent structure recall? In pure p-spin mod-
els, which commonly inform the mean-field description of
glasses [13], the answer is straightforward. Initial systems
taken above the dynamical (or mode-coupling) transition
temperature, Td, are quenched to inherent states indistin-
guishable from one another [14]. In other words, no infor-
mation about the original liquid persits, other than that
it was a liquid. This memorylessness has long been ar-
gued to be a general feature of glass formers, but numeri-
cal simulations of (Kob-Andersen binary) Lennard-Jones
liquids [15–18], model polymers [19], and soft spheres [20–
23] do not concur. In these systems, all states prepared
above an onset Ton > Td share a same inherent state en-
ergy, but inherent state energies of liquids prepared below
Ton differ. The resulting amorphous solid thus seemingly
encodes some features of the original liquid.

Attempts to explain away this discrepancy abound.
Finite-size [24, 25] or finite-dimensional corrections [25,
26] have been invoked, measurement protocols have been
questioned [20, 23], as has the validity of the analogy be-
tween spins and particles [25]. The solution of the glass
problem in the high-dimensional, d → ∞ limit [4], how-
ever, has revealed that the mean-field analogy between

spin and structural glasses is quite strong, and some fea-
tures of the glass phenomenology are remarkably robust
to dimensional changes [13]. A novel proposal for re-
solving this discrepancy recently emerged from the work
Folena et al. [27, 28], who realized thatmixed p-spin mod-
els generically present an onset, and hence that pure p-
spin models might be exceptional rather than typical (see
also [29]).

This advance, however, does not address many of the
remaining concerns, including algorithmic and finite-size
considerations. In this letter, we use advanced computer
simulations to eliminate these hypotheses and strongly
evince the existence of a distinct landscape onset in liq-
uids, and therefore fully resolve the crisis. We further
uncover that the preparation algorithm itself bears signa-
tures of an out-of-equilibrium transition, which strongly
resembles the onset of a Gardner phase. We assess the
properties of this transition, its relation to the jamming
algorithm, and how it defines a memory that distin-
guishes between all initial liquid conditions, even before
the onset is reached.
Model and Simulation Method— We consider the in-

herent states of hard sphere glass formers obtained by
rapidly compressing (crunching), an equilibrated liquid
of N particles at volume fraction φeq to its nearest
jamming point [30]. Existing crunching algorithms ei-
ther violate the hard sphere constraint [31–33], allow for
significant equilibration [23, 34], or scale poorly with
system size [35–38]. In order to avoid these pitfalls,
we modify a recent algorithm by Arceri and Corwin
[39] and propose the iterative scheme depicted schemat-
ically in Fig. 1a. Using the minimum scaled gap,
h = minij(hij) = minij [dij/(ri + rj)] between particles i
and j of radii ri and rj a distance dij apart as reference,
the nth step involves first an inflation, and then a re-
pulsion substep. The former entails expanding particles
uniformly, thus creating a new minimum gap, h′n = θhn,
and the latter uses the FIRE algorithm [40] to minimize
the effective thermal potential for hard spheres near jam-
ming [41, 42], until hn+1 = hn [30]. The expansion factor,
θ < 1, ensures that the hard sphere constraint is never
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Figure 1. a) Schematic of the two-substep iterative jamming algorithm. (i) Inflation: particles (black disks) separated by
minimum gap hn expand uniformly (red disks) until h′n. (ii) Repulsion: an effective free energy is minimized until the minimum
gap reaches hn+1 = hn. The cycle is repeated until density converges at jamming. b) The onset is clearly visible in d = 3 for
all system sizes considered. Lines are fits to the phenomenological crossover form, Eq. (2). The thermodynamic N →∞ limit
of the fit parameters (black line) shows that the onset appears well before the dynamical (mode-coupling) crossover (dashed
black line). c) Finite-size scaling of the jamming transition φJ0 below the onset (top), and the finite-size scaling of the onset
(below), where lines are fits to Eq. (1), and curves are offset for visual clarity.

violated. Although the minimal scaled gap stays con-
stant from one step to the next, interparticle distances
steadily decrease, and hence the algorithm converges at
jamming. Interestingly, a marked algorithmic slowdown
of the FIRE minimization arises well before jamming
is reached. We thus cap the number of steps of this
minimization to a small multiple of the degrees of free-
dom, nFIRE = τNd, to prevent a full minimization–and
thus unwanted thermalization–as the crunching proceeds.
The parameters θ and τ are optimized to achieve the low-
est jamming density while reliably rigidifying the struc-
ture, thus ensuring that equilibration is maximally sup-
pressed. We set θ = 0.9 and τ = 2 which are near optimal
for d = 3 and appear to depend only weakly on dimen-
sion [30]. As a result, a low-density fluid crunched this
way best approximates the maximally random jammed
state [43], and does so fairly efficiently [30].
Onset Memory— The first quantity of interest is the

density of jammed states φJ0(N), obtained from low-
density liquids, and its scaling with system size N upon
approaching the thermodynamic N →∞ limit. Because
of the critical nature of jamming, we expect

φJ0 − φJ0(N) ∼ N−1/νd (1)

with correlation length exponent ν. Soft spheres studies
have found ν ≈ 0.7 [20, 31, 45], which is inconsistent with
ν ≈ 1 obtained from direct measurements of the correla-
tion length at jamming [46]. We here robustly find ν ≈ 1
in all d, with ν = 1.01±0.04, 0.99±0.06, 1.01±0.10, and
1.0 ± 0.3 in d = 3, 4, 5, and 6 respectively, thus resolv-
ing the discrepancy. Although different exponents can in
principle be attributed to model and algorithmic differ-
ences [46], the scaling difference between soft and hard
spheres might also originate from the fact that minimiza-
tion of the former, unlike crunching of the latter, allows
for weak barriers to be crossed. In support of this hypoth-
esis, we note that our thermodynamic extrapolations for

Figure 2. Infinite-system size onset curves for different di-
mensions can be collapsed, suggesting that the inherent struc-
ture onset exists in both the thermodynamic and the infinite-
dimensional limits. Shaded regions give the standard error
of Eq. (2) with 95% confidence intervals on parameters, and
dashed lines denote φd from Ref. [44]. The steady increase of
φd with dimension on this scale shows that φco < φd. The
collapse further supports the identification φon ∼ 0.9φco. (In-
set) Scaling of φJ0 and φon with d, compared with those for
the avoided dynamical transition, φd, and the onset of non-
Fickian diffusion, φnf , from Ref. [44] reveals that both φnf and
φon exhibit a trivial mean-field-like dimensional scaling down
to physical dimensions, unlike φd and φJ0.

φJ0 are close to but systematically smaller than those for
soft spheres for all dimensions considered [30], includ-
ing the careful estimate of Ref. 45. In addition, the lack
of dimensional dependence of this particular critical ex-
ponent for a specific model and algorithm gives further
credence to du = 2 being the lower critical dimension for
jamming [47–49].

Figure 1c shows a clear dependence of the inherent
state density on the original equilibrium liquid condition,
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such that for φeq <∼ φon, φJ is constant, and for φeq >∼ φon,
φJ increases with φeq. The change from one regime to the
other, however, does not sharpen as system size increases,
and thus remains a crossover in the thermodynamic limit.
To quantify this feature, we use the empirical softmax
form [50]

φJ(φeq) = φJ0 + ab ln(1 + e(φeq−φco)/b), (2)

where φco(N) marks the crossover point between the
low density and high density linear regimes, a = dφJ

dφeq

for φeq � φco, and b(N) characterizes the width of the
crossover region. This form nicely recapitulates our ob-
servations, but we note that φco occurs well above the
point at which φJ deviates from φJ0, which traditionally
defines the onset. Without loss of generality, we thus
define φon = 0.9φco. The result scales as φon ∼ N−1/d

(Figure 1b). Because of the limited density range be-
tween φco and φd, around which standard computations
become particularly onerous for monodisperse systems,
the fitting parameters a and b, cannot be independently
determined at fixed N . Imposing that a single a should
fit all N , however, suffices to obtain a robust extrapola-
tion of Eq. (2) to the thermodynamic limit [30].

In order to compare the dimensional trend quantita-
tively, we consider the fractional deviation from φJ0 with
the normalized density growth φeq/φco. The thermody-
namic onset results then collapse onto a master curve
(Fig. 2), strongly suggesting that the onset persists as a
crossover as d → ∞. This scaling also shows that φco
and thus φon are numerically distinct from the (avoided)
dynamical transition φd as indicated by the steady in-
crease of φd on this scale. Hence, independently of the
proposed scaling, our results validate earlier numerical
studies and are in sharp contrast with those of Ref. [14]
for pure p-spin models. The inset of Fig. 2 suggests that
upon considering the mean-field, d→∞, limit the onset
remains roughly constant, while the (avoided) dynamical
transition shifts markedly as d increases. Interestingly,
this same qualitative behavior has been observed for an-
other onset, that of non-Fickian diffusion, φnf [44].

These various results also inform us about the role
played by liquid structure. While the (avoided) dy-
namical transition is strongly affected by that struc-
ture [44, 51], the onset is not. As d increases, struc-
ture markedly simplifies [52, 53], yet the onset persists.
Local structure therefore at most modulates the phe-
nomenon [22]. This distinction suggests that separate
underlying (landscape) mechanisms likely control these
different features. Note also that although it is not imme-
diately apparent why φon and φnf should scale similarly,
the robustness of our results suggests that a complete
out-of-equilibrium dynamical theory should account for
their (near) coincidence.
Algorithmic Memory— Surprisingly, a second form

of memory develops before jamming is reached. As a

Figure 3. The onset of the algorithmic slowdown at φG is
simultaneously characterized by three observables, which ro-
bustly identify a change in the crunching process. The results
shown here for d = 4 with φeq = 0.2 are typical of other d and
φeq.) a) At φG, the distribution of gaps narrows significantly,
such that the minimum gap most closely approaches the av-
erage gap. b) The number of minimization loops necessary
to complete the repulsion substep of the jamming algorithm
grows precipitously, and is manually cut off at τ = 2. c)
The correlation between contact networks, ci, for an unper-
turbed system at jamming and, cj , for a replica perturbed
at φbreak shows that systems perturbed before φG (gray zone)
end up with markedly different contact networks compared to
systems perturbed beyond φG (white zone). Increasing sys-
tem size makes the effect more prominent and shifts the pro-
cess to higher densities but nonetheless remain distinct from
φJ [30]. d) Taken together, these observation suggest that
saddles start to dominate the landscape of the crunch algo-
rithm around φG, thus resulting in sluggish dynamics and a
large contact network response to small perturbations in par-
ticle positions. In other words, a slightly perturbed system (i)
jams as (iii), whereas the original system jams as (ii). This
series of observations for an out-of-equilibrium algorithm is
reminiscent of the Gardner-like behavior of quasi-static state
followings in ultrastable glasses [54].

liquid is initially crunched, interparticle gaps first grow
more regular, such that 〈h〉/hmin ∼ 1 (Figure 3a). Be-
cause of the disordered, and thus frustrated, nature of the
jammed state, however, the repulsion sub-step becomes
increasingly computationally arduous, as illustrated by
the rapid growth in the number of minimization loops
necessary to achieve hn+1 = hn (Fig. 3b). Gap regular-
ization then also goes into reverse. Remarkably, the two
phenomena coincide at some φG. This putative algorith-
mic onset can be further characterized by considering the
outcome of perturbing a state along the jamming algo-
rithm. Taking exact replicas at φbreak and applying a sin-
gle Metropolis Monte Carlo sweep before crunching anew
gives rise to force contacts at jamming, ci, that can vary.
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Comparing these contact networks highlights structural
differences. The quantity 1− (ci ∩ cj)/(ci ∪ cj), in par-
ticular, vanishes if the packings are identical and unity
if they share no contacts. Figure 3c indicates that ap-
plying a perturbation before φG results in markedly dif-
ferent jammed states, whereas perturbations made after
φG result in increasingly small deviations. The spread in
jamming density also correspondingly narrows [30].

Taken together these observations suggest that saddles
start to dominate the optimization landscape around φG,
forcing the selection of a nearby sub-basin and thus of
a contact network at jamming (Fig. 3d). A transition
which sharpened with system size above φG would imply
that all replicas perturbed after φG converge on the same
contact network. That it does not suggests instead a
rich, multi-layered landscape structure reminiscent of an
equilibrium Gardner regime [13, 54–56], for which mean-
field theory predicts a fractal hierarchy of sub-basins [56].

The evolution of φG upon increasing φeq is akin to that
of φJ (Fig. 4), but with an initial linear growth instead
of a density-independent regime [30]. To estimate if both
this linear scaling and φG persist with increasing system
size and dimension, we fit the results to a modified form
of the softmax potential

φG(φeq) = φG0+Γ(φeq−φco)+(a−Γ)b ln(1+e(φeq−φco)/b),
(3)

where a, b, and φco are taken from fits to Eq. (3), and
Γ = dφG

dφeq

∣∣∣
0
is the slope of the linear regime. Figure 4

shows that Γ tends to a constant asN →∞, and that this
constant increases as d increases [30]. Hence, although
systems prepared at different φ(1)eq < φ

(2)
eq < φon both

jam at a density φJ0, φ
(1)
eq encounters a saddle-dominated

regime at smaller densities than φ
(2)
eq . In other words,

while the jammed state may not recall the liquid density
used to prepare it, its crunching certainly notices.

The identification of φG, its similarity to a Gardner
transition, and its echo of the onset provide guidance for
solving out-of-equilibrium dynamical theories [29, 57, 58].
Indeed, while quasi-equilibrium calculations find that
a Gardner transition is a necessary step towards jam-
ming for liquids equilibrated beyond ϕd [54, 59], our re-
sults suggest that an equivalent out-of-equilibrium phe-
nomenon should be uncovered in a mean-field descrip-
tion. If true, this would resolve the paradoxical observa-
tion that jamming criticality is obtained in the experi-
mentally relevant regime [31, 48, 60, 61], with φ � φon,
even in absence of quasi-equilibrium Gardner physics.
Conclusion— By devising an efficient crunching algo-

rithm that does not violate the hard-sphere condition, we
have determined that inherent state memory persists in
the thermodynamic and high-dimensional limits. Such
memory thus ought to exist in mean-field descriptions.
We have further identified a Gardner-like point in the
strongly out-of-equilibrium behavior of our crunching al-

Figure 4. a) The algorithmic φG in d = 3, identified as in
Fig. 3, shifts with system size. (Inset) The low-density slope
of φG tends to a finite value as N increases in all dimensions
(dashed lines). Because the density dependence of φ < φon

seemingly persists in the thermodynamic limit, memory of the
initial state appears upon crunching.

gorithm. This quantity itself varies across φeq, and thus
encodes a second type of memory of the original liquid,
even at densities well below the inherent structure onset.
Although the value of φG is likely strongly algorithm de-
pendent, we expect all such procedures to encounter a
comparable slowdown or instability. Revisiting such al-
gorithms might be particularly instructive, and could of-
fer insight into a broader class of problems, particularly
within generalized learning algorithms, for which inter-
est in Gardner physics has recently grown [62]. If the
association between Gardner physics and strongly out-
of-equilibrium jamming is confirmed, then experimental
validations of the Gardner physics should then also be
well within reach.
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