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Mechanical deformation has recently emerged as a promising platform to realize optical devices
with tunable response. While most studies to date have focused on the tuning of the focal length,
here we use a combination of experiments and analyses to show that an applied tensile strain can also
largely reduce spherical aberration. We first demonstrate the concept for a cylindrical elastomeric
lens and then show that it is robust and valid over a range of geometries and material properties. As
such, our study suggests that large mechanical deformations may provide a simple route to achieve
the complex profiles required to minimize aberration and realize lenses capable of producing images
of superior quality.

From programmable flexible metamaterials [1–5] and
self-regulating fluidics [6, 7] to smart drug delivery sys-
tems [8–11] and scaffolds for tissue engineering [12, 13],
soft materials have enabled the design of a wide range of
functional structures with tunable response. In particu-
lar, inspired by the crystalline lens and ciliary muscle of
the human eye, intense efforts have been devoted to the
design of optical lenses with adjustable focus. To real-
ize these tunable optical systems several strategies have
been pursued. On the one hand, it has been shown that
the focus can be tuned by varying the pressure of fluid
enclosed by a lens-shaped flexible chamber [14–18]. On
the other hand, fully solid lenses capable of focal adjust-
ment have been realized by mechanically or electrically
stretching soft membranes [19–27]. However, despite the
fact that the quality of the images produced by the lenses
is affected by many optical properties, including spherical
aberration, tilt, coma and distortion, these design strate-
gies predominantly consider focal point adaptation [19–
27] and to a limited extent other optical properties such
as astigmatism [25–27] and spherical aberration [28]. In
particular, though spherical aberration has been shown
to reduce in thin lenses upon bending [28], the effect of
other elastic deformations on this important optical prop-
erty has not been explored yet.

In this letter, we show that by pulling an elastomeric
bi-convex lens we not only alter its focal length, but can
also largely reduce its spherical aberration. While in the
undeformed configuration our elastomeric lens exhibits
spherical aberration - as it fails to focus all monochro-
matic rays to the same point (see Fig. 1a) - we find
that a critical applied strain exists for which aberration is
largely reduced (see Fig. 1b). We first use a combination
of experiments and analysis to demonstrate the concept
on a cylindrical lens and then show that the same strat-
egy can also be extended to spherical lenses. As such,
our results indicate that nonlinear deformations may pro-
vide an effective pathway to realize the complex surface
profiles required for aberration-free lenses starting from
simple and easy to manufacture shapes.
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FIG. 1. Harnessing mechanical deformation to reduce spher-
ical aberration in soft lenses. (a)-(b) Schematic of a soft lens
(a) in its undeformed and (b) stretched configuration. When
the lens is at rest, it exhibit spherical aberration as the rays
does not converge to a single point. In the stretched configu-
ration not only the focal length increases but also the spher-
ical aberration may be largely reduced. (c) Schematic of the
cylindrical bi-convex lens considered in this study.

We consider a cylindrical biconvex lens formed through
intersection of two cylinders of radius Rr and Rl and
center-to-center distance ∆x that are aligned along the z-
axis. Such lens has thickness t = Rr+Rl−∆x and height
2h, as it is truncated by two xz planes located at a dis-
tance h from the symmetry plane (see Fig. 1c). Further,
it is made of an elastomeric material and is stretched
by applying a y-displacement v to its top non-refracting
boundary (while fixing the bottom one). We first conduct
Finite Element (FE) analyses within the open-source li-
brary Firedrake [29] to investigate the deformation of
such soft lens. We assume plain strain conditions and use
higher order quadratic boundary conforming elements to
to mitigate mesh discretization errors of the surfaces.
Moreover, we capture the material response with a com-
pressible Neo-Hookean model with strain energy density
Ψ given by

Ψ =
µ

2
(tr(F>F)− 3)− µdet(F) +

µν

1− 2ν
log(detF)2,

(1)
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where F is the deformation gradient, µ is the shear mod-
ulus and ν is the Poisson ratio (see Supporting Informa-
tion for details). For each given deformed configuration,
we then use geometrical ray tracing [30] to compute the
trajectories of incidents rays that travel parallel to the
optical axis (i.e., parallel to the x-axis). Note that, while
the refractive index n generally varies with the material
stress [31], for the material and range of applied deforma-
tion considered in here such changes are negligible (i.e.,
max(∆n) ≈ 0.1%). As such, in our calculations we as-
sume n to be constant.

In Fig. 2a we show the deformed configurations as well
as the computed ray trajectories for a lens with Rr/h =
1.6, Rl/h = 60, t/h = 0.72, ν = 0.45 and n = 1.4 at
ε = v/2h = 0 (i.e., undeformed configuration) and 10.6%
Our results indicate that, while rays entering the lens
near the optical axis converge at the paraxial focal point
F (located at a distance f from the right surface), those
that reach the lens at y � 0 intersect the optical axis at a
distance `(y) from F . For ε = 0, we find that f = 3.41h
and `(y)/h ∼ 0.28(y/h)2. Differently, for ε = 10.6%
the paraxial focal point distance increases to 3.82h and
`(y) ∼ 0. As such, these results indicate that the applied
deformation not only enables us to tune the focus of the
lens, but can also be exploited to reduce its aberration.

In order to better quantify the effect of the applied
deformation on aberration, we introduce a longitudinal
measure of the spherical aberration, L = max `(y) for
y ∈ [−0.8h, 0.8h], where this range is chosen to avoid
highly nonlinear boundary effects [32]. In Fig. 2b we plot
the evolution of both the paraxial focal point distance, f ,
and longitudinal measure of the spherical aberration, L,
as a function of the applied strain, ε. The results indicate
that, while f increases linearly with ε, L first decreases,
reaches a minimum at ε = εmin = 10.6% and then further
increases. To gain more insight into the physical ingre-
dients underlying the observed phenomenon, we examine
the deformed shape of the stretched lens. Towards this
end, in Fig. 2c we report the maximum principal stretch,
λmax, and its directions at εmin. We find that the defor-
mation is minimal in the region close to the left surface
near the optical axis, so that the initial spherical curva-
ture is preserved there. However, away from the optical
axis the lens deforms non-uniformly making the surfaces
deviate from their initial spherical profile — a fact that is
known to promote reduction in spherical aberration [33].

Next, to validate our numerical findings, we fabri-
cate a lens identical to that considered in Fig. 1b (with
t = 18mm) out of a transparent silicone elastomer (Sly-
gard 184 - see Supporting Information for details). In our
tests we clamp the lens at its flat boundaries and use a
linear stage motor (ThorLabs-LTS300) to stretch it (See
Fig. 2c). At different levels of applied deformation we
then scan the left surface of the lens with a laser (LT-301
500mW) mounted on a separate linear stage and pointed
parallel to lens optical axis, while recording the trajec-
tories of the reflected ray with a camera (SonyRX400 -
see Supporting Information for details). We find the ex-

perimental results nicely match both the deformed shape
(Fig. 2d) as well as the evolution of f and L (Fig. 2b) pre-
dicted by our numerical analyses, with small discrepan-
cies due to unavoidable imperfections introduced during
fabrication and testing. As such, these results confirm
that pulling a biconvex lens, in addition to increasing
its focal length, also reduces the longitudinal measure of
spherical aberration.

FIG. 2. Pulling of a bi-convex cylindrical lens with
Rr/h = 1.6, Rl/h = 60, t/h = 0.72. (a) Ray trajectories
at ε = 0% (top) and ε = εmin = 10.6% (bottom). (b) Evolu-
tion of L/L0 (blue) and f/f0 (red) as a function of ε, where
L0 = L(ε = 0) = 0.05h and f0 = f(ε = 0) = 5.6h. Both ex-
perimental (markers) and numerical (solid lines) results are
shown. (c) Numerically predicted magnitude and direction
of the maximum principal stretch at ε = εmin = 10.6%. (d)
Experimental setup. (e) Experimental (top) and numerical
(bottom) snapshots of the lens at different level of applied
deformation. For the numerical images, we also show the the
maximum principal stretch λmax in the deformed configura-
tions.

The deformation-induced reduction in longitudinal
aberration observed in both experiments and simulations
(Fig. 2b) suggests that at a critical strain the lens sur-
face approaches the profile of a perfect zero-aberration
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lens. To quantify the agreement between the two geome-
tries, we first analytically derive the surface profile for
an aberration-free lens and then compare it with that of
our stretched lens. To this end, we use Fermat’s principle
which states that incident rays emanating from the same
source plane and converging at an identical point must
have equal optical path lengths. In particular, we con-
sider the optical path of an arbitrary far-field ray that
enters the left lens surface point Q, exits at the right
surface at point P and intersects the optical axis at the
focal point at angle an angle θ. The optical path length
of such ray between the yz-plane passing through the
leftmost point of the lens and the focal point is given by

ΛP = n0 (f + L0 − L(θ)− xP ) + n
L(θ)

cos(δ)

+n0

√
x2p(θ) + y2p(θ),

(2)

where n0 denotes the refractive index of the surrounding
medium, L(θ) represents the horizontal distance travelled
through the lens, L0 ≡ L(θ = 0) and (xp, yp) are the
coordinates at point P . Moreover, δ is the angle between
the horizontal axis and the in-lens ray path (Fig. 3a),
which is determined by Snell’s law

n sin(ψ + δ) = n0 sin(θ + ψ), (3)

with ψ = tan−1(dxP /dyP ). Note that the first, second
and third terms in Eq. (2) denote the optical distances
travelled by the off-axis ray to (i) arrive at point Q from
the selected yz-plane, (ii) traverse the lens, and (iii)
reach the focal point from point P. Since for a ray trav-
elling along the optical axis (for which θ = 0 and yp = 0)
Eq. (2) reduces to

Λax = nL0 + n0f, (4)

the aberration-free lens at each level of applied strain is
calculated by imposing ΛP = Λax, while inputting the
right surface coordinates, (xp, yp), focal distance, f , and
deformed lens thickness, L0, obtained in the FE simu-
lation [34]. In Fig. 3b we analyze the difference in the
coordinates of the left surface of the aberration-free lens
defined by xAna = (xp +L(θ)/ cos δ, yp +L(θ)/ sin δ) and
the simulated coordinates, xFE, by looking at their L2-
norm difference for y ∈ (0, 0.8h) as a function of the
applied strain ε. We find that the surface quickly ap-
proaches the aberration-free profile and then gradually
deviates from it at larger strains, with the L2-norm dif-
ference that reaches a nonzero minimum at εmin. As
such, these results indicate that the nonlinear deforma-
tion caused by applied strain εmin results in a lens pro-
file with non-constant curvature very close to that re-
quired to remove aberration in a bi-convex cylindrical
lens. To further understand the effect of the applied de-
formation on aberration, we plot the difference between
the aberration-free and stretched profiles along the lens
height. The results reported in Fig. 3c show that different
regions of the lens approach the aberration free surface

at different rates. As the strain is applied the entire lens
converges towards the aberration-free profile until a small
difference is reached at εmin. Any additional deformation
then causes the region next to the boundaries to diverge
while the inner region continues to converge closer to the
aberration-free profile. These two contrasting trends lead
to an increase of L2-norm difference between the coordi-
nates of the left surface of the aberration-free lens for
ε > εmin. Therefore, our results indicate that the com-
bined deformations of the right and left surface, and the
change in the lens thickness caused by the applied de-
formation contribute in a complex way to the observed
reduction in aberration.

FIG. 3. Aberration-free profiles. (a) Schematic of our cylin-
drical biconvex lenses. (b) Evolution of L2-norm difference
between the coordinates of the left surface of the aberration-
free lens and the simulated one, ||xAn

Q −xFE
Q ||, as a function of

the applied strain, ε for the lens considered in Fig. 2. (c) Dif-
ference between the stretched profile and an aberration-free
profile, xAn

Q −xFE
Q , along the lens height, y/h. (d) Left surface

deviation from its initial configuration at different strains pre-
dicted by the reduced order model (black lines), and the de-
viation required for a zero-aberration lens surface (blue line).

Next, to further elucidate the effect of deformation
on aberration reduction, we developed a reduced order
model where we describe the cylindrical lens as a series
of infinitesimal hyperelastic rectangular elements under-
going uniaxial deformation and assume that the right sur-
face remains flat throughout the stretching process (see
Supporting Information for details). This simple model



4

allows us to describe the left surface profile as a func-
tion of applied strain and, therefore, quantify the effect
of stretching on aberration. In Fig. 3d we plot the left
surface deviation from its initial configuration at differ-
ent strains predicted by the reduced order model (black
lines), and the deviation required for a zero-aberration
lens surface (defined by Eqs. (2)-(4) - blue line). In agree-
ment with the results of our FE simulations, we find that
the left surface of the lens approaches the profile of a zero
aberration lens as ε increases, but the profiles never fully
coincide. As such, the reduced order model points to
the robustness of the observed phenomenon, as it shows
that the stretching-induced reduction in aberration can
be observed as geometric parameters are varied.

Having demonstrated that the applied deformation can
be exploited to largely reduce aberration in a cylindri-
cal lens, we now show that the phenomenon persists
for a wide range of geometrical and material properties
and that can be also extended to spherical lenses. In
Figs. 4a-d we report the numerically predicted evolution
of L as a function of the applied deformation for a large
set of cylindrical lenses as well as spherical ones, which
are deformed by radially stretching their non-refracting
boundaries (see Supporting Information for details). The
results indicate that regardless of geometry and Pois-
son’s ratio, the applied stretching can be harnessed to
reduce aberration of both cylindrical and spherical bi-
convex lenses by ∼ 85% − 90%. Further, by comparing
the response of the spherical and cylindrical lenses, we
find that the former require a smaller applied strain to
minimize L. The results of Fig. 4a-d also show that for
all sets of considered parameters the aberration curves
follow a similar trajectory (i.e., decreasing to a mini-
mum reached and increasing afterward) with the strain
at which the aberration is minimum, εmin, determined by
a complex interplay between mechanics, geometry, and
optical properties. The dependence of εmin to various
geometrical parameters can be extracted from our nu-
merical results and can be used for the lens design (see
Supporting Information for details). We further like to
point out that εmin not only depends on geometrical and
material parameters, but also it depends on the aper-
ture size (i.e., the area of the lens considered). A smaller
aperture results in smaller initial aberration. However,
since the central region of the lens is slower in approach-
ing the zero aberration profile, εmin becomes larger (see
Fig. S4). Remarkably, the aberration reduction persists
independent of geometrical and material properties and
initial aperture size.

While the proposed concept is robust with respect to
geometric variations, it is important to recognize that the
direction of the applied deformation plays a crucial role.
As shown in Fig. 4e, differently from the pulling consid-
ered thus far, an applied compressive deformation further
accentuates the initial aberration as it locally changes the
lens’ surfaces to move them away from the aberration-free
profiles (see Fig. S3). Differently, a compression load
may reduce aberration in a bi-concave lens (see Fig. 4f

for a lens characterized by Rr/h = −60, Rl/h = −1.6
and t/h = 0.32), but such reduction is limited to small
levels of strain as under compression a buckling insta-
bility is triggered that significantly alters its geometry
(Movie S1).

FIG. 4. Effect of geometry, material and loading direction on
L. (a)-(e) Effect of (a) Rr/h, (b) Rl/h, (c) t/h and (d) ν
(note that ν = 0.5 requires an incompressible strain energy
function ψ - see Supporting Information for details) and (e)
loading direction on L for both cylindrical (solid lines) and
spherical (dashed lines) bi-convex lenses. (f) Effect of loading
direction on L for a bi-concave lens.

To summarize, we have demonstrated that mechanical
deformation can be harnessed to reduce spherical aberra-
tion of cylindrical/spherical bi-convex soft lenses. More
specifically, we have used analyses to show that a crit-
ical strain exists for which the profile of the deformed
lens closely approaches the shape of an aberration-free
one and also demonstrated the concept experimentally.
Although in this study we have focused on conven-
tional biconvex/biconcave elastomeric lenses with ini-
tially smooth surfaces, the proposed methodology is gen-
eral and do not rely on any approximation, such as parax-
ial approximation or thin lens approximation. Therefore,
it can be extended to design thin and thick uncon-
ventional lenses with irregular shapes as well as surface
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features (such as cuts, local bulges, or wrinkles) purpose-
fully introduced to further alter the optical response. In
parallel, it also enables investigation of different deforma-
tion protocols, such as twisting, shearing and extension
followed by bending which has been showed to result in
aberration reduction in thin lenses [28, 35, 36]. Further,
generalizations can be achieved by exploring the effect of
different materials. For example, by incorporating a tem-
perature dependent visco-elastic model for glass [37–39],
one could investigate the effect of deformation applied in
the melted state on lenses made of glass, providing new
routes for the realization of aberration-free lenses. Fi-
nally, while here we have considered spherical aberration,

the effect of deformation on different other optical prop-
erties, including tilt, coma and distortion, remains to be
explored. Given these additional possibilities, we have
made all our numerical codes available for download to
be used and expanded upon by the community [40].
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