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The energy dissipation rate in a nonequilibirum reaction system can be determined by the reaction
rates in the underlying reaction network. By developing a coarse-graining process in state space
and a corresponding renormalization procedure for reaction rates, we find that energy dissipation
rate has an inverse power-law dependence on the number of microscopic states in a coarse-grained
state. The dissipation scaling law requires self-similarity of the underlying network, and the scaling
exponent depends on the network structure and the flux correlation. Existence of the inverse
dissipation scaling law is shown in realistic biochemical systems such as biochemical oscillators and
microtubule-kinesin active flow systems.

Living systems are far from equilibrium. Energy dis-
sipation is critical not only for growth and synthesis but
also for more subtle information processing and regula-
tory functions. The free energy dissipation is directly
related to the violation of detailed balance–a hallmark
of nonequilibrium systems–in the underlying biochemi-
cal reaction networks [1]. In particular, driven by energy
dissipation (e.g., ATP hydrolysis), these biochemical sys-
tems can reach nonequilibrium steady states (NESS) that
carry out the desired biolgical function. One of the fun-
damental questions is then how much energy dissipation
is needed for performing certain biological function. In-
deed, much recent research has been devoted to under-
standing the relation between the energy cost and the
performance of biological functions such as sensing and
adaptation [2, 3], error correction [4, 5], accurate timing
in biochemical oscillations [6] and synchronization [7].

Quantitatively, the free energy dissiaption rate can
be determined by computing the entropy production
rate in the underlying stochastic reaction network given
the transition rates between all microscopic states of
the system [8, 9]. However, for complex systems with
a large number of microscopic states, the system may
only be measured at a coarse-grained level with coarse-
grained states and coarse-grained transition rates among
them. By following the same procedure for computing
entropy production rate, we can determine the energy
dissipation rate at the coarse-grained level. Although
it is known that coarse-graining reduces entropy pro-
duction [10, 11], the quantitative relation between the
coarse-grained energy dissipation rate and the “true” dis-
sipation rate obtained at the microscopic level remains
elusive. Here, we connect dissipation at different scales
by developing a coarse-graining procedure inspired by
the real space renormalization group (RG) approach by
Kadanoff [12, 13] and applying it to various reaction
networks in the general state space, which include both
physical and chemical state variables. We find that the
energy dissipation rate satisfies an inverse power law with
the coarse-graining scale in a wide range of nonequilib-
rium systems including microtubule-kinesin active flow

systems [14] and biochemical oscillators [15, 16].
Nonequilibrium reaction network and dissipa-

tion rate. Each node in the reaction network represents
a state of the system and each link represents a reaction
with the transition rate from state i to state j given by

ki,j = k0
i,jγi,j =

2k0

1 + exp (∆Ei,j/kBT )
γi,j , (1)

where k0
i,j represents the equilibrium reaction rates and

∆Ei,j(= Ei−Ej) is the energy difference between states
i and j. We set k0 = 1 for the time scale and
kBT = 1 for the energy scale. The equilibrium rates
satisfy detailed balance k0

i,j/k
0
j,i = e−∆Ei,j and γi,j rep-

resents the nonequilibrium driving force. For a given
loop (l1, l2, ..., ln, l1) of size n (ln+1 = l1) in the net-
work, we define a nonequilibrium parameter Γ as the
ratio of the product of all the rates in one direction
over that in the reverse direction: Γ = Πn

k=1

γlk+1,lk

γlk,lk+1

.

The system breaks detailed balance if there is one or
more loops for which Γ 6= 1. The steady-state proba-
bility distribution {P ssi } can be solved from the master
equation:

∑
j

(
kj,iP

ss
j − ki,jP ssi

)
= 0 with normalization∑

i P
ss
i = 1. The steady-state dissipation (entropy pro-

duction) rate is given by [8, 9]:

Ẇ =
∑
i<j

(Ji,j − Jj,i) ln
Ji,j
Jj,i

, (2)

where Ji,j = ki,jP
ss
i is the steady-state probability flux

from state i to state j.
State space renormalization and dissipation

scaling. The network can be coarse-grained by grouping
subsets of highly connected (neighboring) states to form
a coarse-grained (CG) state while conserving both total
probability of the state and the total probability flux be-
tween states. For example, when we group two sets of mi-
croscopic states, (i1, i2,. . . , ir) and (j1, j2,. . . , jr), to form
two CG states i and j, the probability of each CG state
is the sum of the probability of all constituent states:

P ssi =

r∑
α=1

P ssiα , P ssj =

r∑
α=1

P ssjα . (3)
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FIG. 1. (A) Illustration of the coarse-graining process in
square lattice. All states in the shaded area (blue or green)
are merged to form the new CG state. The red links are com-
bined together to form the transition reaction between the
new states, while black links correspond to internal transi-
tions that are removed in the CG model. (B) Illustration of
the growth mechanism in random hierarchical network. The
example here corresponds to m = 6, d = 2.

The transition rates in the CG system is renormalized to
preserve the total probability flux from state i to j:

ki,j =
Ji,j
P ssi

=
1

P ssi

∑
(α,β)

Jiα,jβ =

∑
(α,β) kiα,jβP

ss
iα∑r

α=1 P
ss
iα

. (4)

Fig. 1A demonstrates an example in a square lattice with
r = 4. The red links correspond to transitions that sur-
vive the coarse-graining process with their reaction rates
renormalized according to Eq. 4. The black links rep-
resent internal transitions that are averaged over during
coarse-graining. The dissipation rate of the CG system
can be computed from Eq. 2 with the renormalized prob-
ability distribution (Eq. 3) and transition rates (Eq. 4).

For a microscopic system with n0 states, coarse-
graining s times leads to a system with ns states. Each
state in the CG system hence contains n0

ns
original states.

We define n0

ns
as the block size, which is used to char-

acterize the degree (scale) of coarse-graining. Our main
result is that the dissipation rate of the CG system Ẇ (ns)
scales as an inverse power law with respect to the block
size for a diverse class of reaction networks:

Ẇ (ns)

Ẇ (n0)
=

(
n0

ns

)−λ

, (5)

where λ is the dissipation scaling exponent. Furthermore,
the exponent λ depends on the structure of the network
with an unifying expression for the networks we studied:

λ = dL − logr(1 + C∗), (6)

where r = ns/ns+1 is the number of fine-grained states
in a next-level CG state and the link exponent dL is de-
fined as the scaling exponent of the total number of links
(reactions) L with respect to the block size:

dL ≡
ln(L(ns)/L(n0))

ln(ns/n0)
. (7)
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FIG. 2. (A)Probability density function (PDF) of ln ki,j at
different CG levels (from left to right, coarse-grained to fine-
grained). Inset: normalized PDF all collapse to a standard
Gaussian distribution. (B) Mean (µ) and standard deviation
(σ) of the ln ki,j distribution as a function of the block size
n0/ns. (C) Power-law relation between the scaled dissipation

rate Ẇs/Ẇ0 and the block size n0/ns, in square lattice (blue
circle), cubic lattice (green triangle), and random hierarchical
network (red square, d = m = 4). (D) Correlation coefficient
C∗

s of the three systems plotted in (c).

The detailed derivation of Eq. 6 is provided in Sec. I in
the Supplementary Material (SM), and C∗ is the average
correlation between probability fluxes defined as:

C∗ =
〈Aiα,jβ

(
Ai,j −Aiα,jβ

)
〉iα,jβ√

〈A2
iα,jβ
〉iα,jβ 〈

(
Ai,j −Aiα,jβ

)2〉iα,jβ , (8)

where Ax,y = Jx,y − Jy,x is the net flux between states x
and y, and

(
Ai,j −Aiα,jβ

)
is the sum of other fluxes that

are merged with Aiα,jβ during coarse-graining.
Next, we demonstrate the energy dissipation scaling

in different types of extended networks. For simplic-
ity, we focus on the simplest case with a flat energy
landscape (∆Ei,j = 0) and a random nonequilibrium
force γi,j that follows a lognormal distribution, namely
ln (γi,j) ∼ N (µ, σ). Other forms of energy landscape
and rate distributions are studied without affecting the
general scaling results (see Sec. II in SM for details).
Regular lattice. We first consider a N0 ×N0 square

lattice network, where the coarse-graining is done by
grouping 4 (= 2 × 2) neighboring states at one level to
create a CG state at the next level iteratively (Fig. 1A).
Both transition rates and the overall dissipation evolve
as the system is coarse-grained. As shown in Fig. 2A, the
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renormalized transition rates follow lognormal distribu-
tions at all CG levels, i.e. ln k ∼ N (µ, σ), with mean and
variance decreasing with the block size (Fig. 2B). Con-
sequently, the dissipation rate also decreases with coarse
graining. Remarkably, the dissipation rate decreases with
the block size by following a power-law (Fig. 2C, blue
circle). The numerically determined scaling exponent
λ2d = 1.35 suggests that the dissipation rate decreases
faster than the block size. As the number of links is in-
versely proportional to the block size in a regular lattice,
we have dL = 1. According to Eq. 6, the dissipation
scaling exponent λ2d = 1 − log4 (1 + C∗), where C∗ de-
notes the probability flux correlation coefficient defined
in Eq. 8. C∗ can be calculated from direct simulations
(Fig. 2D, blue circles), and it appears to decrease with
the block size and converges to a fixed point ∼ −0.50 (by
extrapolation), which corresponds to a scaling exponent
of λ = 1.50 at the infinite size limit. For the finite sys-
tems studied here, the correlation coefficient C∗ is larger
than its infinite size value, and the exponent found in our
simulations is slightly smaller (λ2d = 1.35 < 1.50).

The 2D results can be generalized to regular lattice
in higher dimensions, where dL = 1 and the correlation
coefficient C∗ converges to a fixed value dependent on
the dimension. For example, the numerically determined
scaling exponent in the cubic regular lattice is λ3d =
1.23 > 1 (Fig. 2C, green triangles) as C∗ in 3D is found
to converge to a value slightly greater than its 2D value
(Fig. 2D, green triangles).

Random hierarchical network. To investigate the
dissipation scaling behavior in networks with irregular
structures, we introduce the random hierarchical net-
works (RHN), which share some features of the regu-
lar lattice such as the conservation of average degree at
different CG levels. However, links among neighboring
states in RHN are created randomly. RHN is constructed
from a small initial network with ns states by an itera-
tive growth process.In each growth iteration, each macro-
state splits into m micro-states with (md)/4 links ran-
domly created among them. Each link then splits into
m/2 links by randomly choosing m/2 distinct pairs of
micro-states that belong to the two macro-states and con-
necting them pairwise. In this way, the average degree
d is preserved in all of the CG levels. Each growth step
results in an m-fold increase in both the number of states
and the number of links, leading to dL = 1, however, the
local reaction links are randomly chosen in RHN.

The coarse-graining process follows precisely the rever-
sal of the growth procedure. As shown in Fig. 2C (red
squares), the dissipation rate in RHN also scales with the
block size in a power-law manner with the scaling expo-
nent λRHN ≈ 1 regardless of the choices of parameters
(d and m) used to grow the RHN (see Table S1 in SM
for details). In RHN, the flux correlation C∗ vanishes at
the RG fixed point (Fig. 2D, red squares) due to the ran-
domness of reaction links. Therefore, according to Eq. 6,

we have λRHN = dL = 1 independent of d or m. The
RHN can be considered as a mean-field generalization of
a regular lattice of dimension log2m. In both cases, the
link exponent dL = 1, the different dissipation scaling
exponents come from the different flux correlation C∗.
Scaling requires network self-similarity. We next

study how the dissipation scaling depends on topology of
the network by considering embedded scale-free networks
(SFN) characterized by a power-law degree distribution
p(k) ∝ k−α (k ≥ kmin) [17–20] [21]. We find that the dis-
sipation rate in the 2D-embedded SFN also scales with
block size as a power law with the exponent λ depending
on the link exponent dL and flux correlation coefficient
C∗ as given in Eq. 6. Due to the local randomness in
SFN, we expect C∗ ≈ 0 as in RHN, and dL depends on
the fractal dimension dB and exponent α of the embed-
ded SFN (see Sec. I in SM for detailed derivation). How-
ever, the dissipation scaling relation does not exist in all
networks. For example, even though the dissipation rate
decreases with coarse-graining in both Watts-Strogatz
small-world network [22] and the Erdős-Rényi random
network [23], the scaling law defined by Eq. 5 is not sat-
isfied in either of these networks (see Fig. S15 in SM).
The existence of the dissipation scaling law depends on
whether the network has self-similarity, i.e., whether the
CG process converges the network to the complete-graph
fixed point or a self-similar (fractal) fixed point [24]. The
regular lattices, RHN, and SFN converge to a self-similar
fixed point, i.e., networks at all CG levels are structurally
similar and properties like the number of links (reactions)
and total dissipation rate all scale in a power-law fashion.
However, in the small-world network or the Erdős-Rényi
network, the CG process eventually generates a complete
graph with all nodes directly connected.

Dissipation scaling in biochemical systems.
Here, we demonstrate the general dissipation scaling be-
havior in two biochemical systems with their state vari-
ables defined in chemical and physical space, respectively.

1) The Brusselator model. The Brusselator model de-
scribes a class of biochemical systems that can generate
sustained oscillations [15, 25]. Here, we study the dis-
sipation scaling in the reversible Brusselator model [16]
where dynamics of molecules X and Y are given by the
following multi-molecular chemical reactions:

A
k1


k−1

X; B +X
k02


k0−2

D + Y ; 2X + Y
k3


k−3

3X

with constant reaction rates (k’s) and constant concen-
trations for auxiliary molecules A, B, and D. As shown
in Fig. 3A, the chemical state space of the Brusselator
model is spanned by two state variables nx and ny that
represent the number of X and Y molecules, respectively.
Different from the random flux model, transition rates
in the Brusselator reaction network depend determinis-
tically on the state variables nx and ny (see Sec. III in
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FIG. 3. (A) The reaction network and the coarse-graining
scheme for the Brusselator system. The four states in the
central blue shade form the new blue state, the red links are
coarse-grained into the links between the new blue state and
adjacent states. (B) The scaling of dissipation rate Ẇs in
Brusselator. (C) The reaction network for the microtubule-
kinesin mixture. Each gray circle denotes a spatial location,
and the four colors denote different MT orientations. (D) The

scaling of dissipation rate Ẇs in the MT-kinesin system. See
SM for parameters used in (B) and (D).

SM for details). In addition, the Brusselator network
has diagonal links (reactions) that convert between X
and Y molecules. Despite these differences, the same
coarse-graining procedure can be applied to study dis-
sipation scaling in the Brusselator model. As shown in
Fig. 3B, dissipation rate of the Brusselator model fol-
lows a power law dependence on the block size with an
exponent λ ≈ 0.56.

2) The microtubule-kinesin system. The state space
coarse-graining process and the dissipation scaling anal-
ysis can be applied to active matter systems, e.g., a
microtubule-kinesin mixture where the active transport
of microtubules (MT) powered by ATP-consuming ki-
nesin can lead to mascroscopic flows [14]. To investigate
possible dissipation scaling behavior in active transport
systems, we developed a simple 2D lattice model for a
MT-kinesin mixture, which can be extended to 3D. As
shown in Fig. 3C, the microscopic state variables for a
MT molecule are its physical location (i, j) and its polar-
ity p = 1, 2, 3, 4 (labeled by different colors in Fig. 3C),
which corresponds to the 4 possible directions in the 2D
model. At each site (i, j), MT can change its orienta-
tion by 90 degrees with a switching rate ω. The trans-
port rate of MT at site (i, j) in direction p is given by
ki,j,p = kd + k̃i,j,p(ni,j,p), where kd is a small passive

transport rate due to thermal diffusion and k̃i,j,p is the
active transport rate that depends on ni,j,p – the number
of kinesin motors at site (i, j) that drive the active trans-
port along p direction. Without considering motor-motor

interaction, we use the leading order linear dependence:
k̃i,j,p = k0ni,j,p, where k0(� kd) is a large single-kinesin
active transport rate that increases with the ATP concen-
tration. To make our model thermodynamically consis-
tent, a reverse rate ki,j,−p = kd+ k̃i,j,p exp(−ni,j,p∆µ0) is
included with ∆µ0 the free energy dissipation in ATP hy-
drolysis. For simplicity, we assume that ni,j,p follows an
i.i.d. Gaussian distribution ni,j,p ∼ max(0,N (µ, σ)) [26].
The coarse-graining procedure is applied for the MT-
kinesin network. The first iteration combines the four ori-
entation states at the same location, and the subsequent
iterations merge neighboring spatial locations. As shown
in Fig. 3D, the dissipation rate in the coarse-grained net-
works follows a power-law scaling relation with an expo-
nent λ ≈ 1.33 after the initial coarse-graining step. In
reality, dynamics of the kinesin number ni,j,p, which is
coupled with MT dynamics, can lead to spatial corre-
lation in ni,j,p. However, the dissipation scaling law re-
mains true when spatial correlation in ni,j,p is introduced
(see Sec. III in SM for details).

Discussion. The dissipation scaling in self-similar re-
action networks is reminiscent of the Kolmogorov scal-
ing theory in homogeneous turbulence, which is based
on self-similarity of the turbulence structures (“eddies”)
at different scales in the inertia range [27, 28]. How-
ever, as illustrated in Fig. 4, while energy is introduced
at large length scale in turbulence, free energy is injected
at the microscopic scale in reaction networks, which leads
to the “inverse cascade” of energy dissipation. Further-
more, while energy is conserved within the inertia range
in turbulence, it is dissipated at all scales in nonequilib-
rium networks. In fact, the inverse scaling law, Eq. 5,
indicates that the energy dissipation rate in a coarse-
grained network (CGN) is much lower than that in its
preceding fine-grained network (FGN). The difference in
energy dissipation in CGN and FGN is due to two “hid-
den” free energy costs in CGN: 1) the energy dissipation
needed to maintain the NESS of a CG state, which con-
tains many internal microscopic states and transitions
among them; 2) the entropy production due to merging
multiple reaction pathways into a CG reaction between
two CG states [29, 30] (See Sec. IV in SM for details).

The state space coarse-graining approach and the dis-
sipation scaling analysis developed here provide a gen-
eral framework to study nonequilibrium theromdynam-
ics of biochemical systems where dynamics may only be
measured at coarse-grained (mesoscopic) scales [14, 31].
In particular, the dissipation scaling relation provides a
powerful tool for estimating the true microscopic dissipa-
tion rate from mesoscopic measurements. For example,
in the MT-kinesin system, ATP is hydrolyzed to drive
the relative motion of microtubules (MT) with the mi-
croscopic coherent length given by the kinesin persistent
run length l0 ∼ 0.6 − 1µm [32, 33]. The active flow
of the MT-kinesin system can occur at a much larger
length scale lf ∼ 100µm [14]. By using the dissipa-
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FIG. 4. Comparison between the inverse energy dissipation
cascade in self-similar reaction networks and the Kolmogorov
energy cascade in turbulence. See text for detailed discussion.

tion scaling law (Eq. 5), the energy dissipation rate Ẇf

determined from the flow velocity field at the length
scale lf is orders of magnitude smaller than the true

energy dissipation rate Ẇ0 at the microscopic scale l0

:
Ẇf

Ẇ0
≈ ((l0/lf )3)λ3d ≈ 10−7.4 − 10−8.2 where λ3d = 1.23

for the 3D regular lattice network is used. This means
that most of the energy is spent to generate and maintain
the flow motion at different length scales from l0 to lf ,
and only a tiny amount is used to overcome viscosity at
the large flow scale lf . It would be interesting to test this
large difference in energy dissipation experimentally.
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[23] P. Erdős and A. Rényi, On random graphs, Publ. Math.
(Debrecen) 6, 290 (1959).

[24] H. D. Rozenfeld, C. Song, and H. A. Makse, Small-world
to fractal transition in complex networks: A renormal-
ization group approach, Phys. Rev. Lett. 104, 025701
(2010).

[25] G. Nicolis and I. Prigogine, Self-organization in non-
equilibrium systems (Wiley, New York, 1977).

[26] Other forms of distribution have been used without af-
fecting the results.

[27] S. B. Pope, Turbulent flows (Cambridge University Press,
2000).

[28] Z. Warhaft, Passive Scalars in Turbulent Flows, Annu.
Rev. Fluid Mech. 32, 203 (2000).

[29] M. Santillán and H. Qian, Irreversible thermodynamics
in multiscale stochastic dynamical systems, Phys. Rev. E
83, 041130 (2011).

[30] M. Esposito, Stochastic thermodynamics under coarse



6

graining, Phys. Rev. E 85, 041125 (2012).
[31] C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer,

J. Howard, C. F. Schmidt, and F. C. Mackintosh, Broken
detailed balance at mesoscopic scales in active biological
systems, Science 352, 604 (2016).

[32] R. D. Vale, T. Funatsu, D. W. Pierce, L. Romberg,
Y. Harada, and T. Yanagida, Direct observation of sin-
gle kinesin molecules moving along microtubules, Nature
380, 451 (1996).

[33] S. Verbrugge, S. M. Van Den Wildenberg, and E. J. Pe-
terman, Novel ways to determine kinesin-1’s run length
and randomness using fluorescence microscopy, Biophys.
J. 97, 2287 (2009).

[34] C. Song, S. Havlin, and H. A. Makse, Self-similarity of

complex networks, Nature 433, 392 (2005).
[35] C. Song, L. K. Gallos, S. Havlin, and H. A. Makse, How

to calculate the fractal dimension of a complex network:
the box covering algorithm, J. Stat. Mech. Theory Exp.
2007, P03006 (2007).

[36] J. S. Kim, K.-I. Goh, B. Kahng, and D. Kim, Fractality
and self-similarity in scale-free networks, New J. Phys. 9,
177 (2007).

[37] L. Fenton, The sum of log-normal probability distribu-
tions in scatter transmission systems, IRE Trans. Com-
mun. Syst. 8, 57 (1960).

[38] R. L. Mitchell, Permanence of the log-normal distribu-
tion, J. Opt. Soc. Am. 58, 1267 (1968).


