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A major challenge in developing quantum computing technologies is to accomplish high precision
tasks by utilizing multiplex optimization approaches, on both the physical system and algorithm lev-
els. Loss functions assessing the overall performance of quantum circuits can provide the foundation
for many optimization techniques. In this paper, we use the quadratic error loss and the final-state
fidelity loss to characterize quantum circuits. We find that the distribution of computation error is
approximately Gaussian, which in turn justifies the quadratic error loss. It is shown that these loss
functions can be efficiently evaluated in a scalable way by sampling from Clifford-dominated cir-
cuits. We demonstrate the results by numerically simulating ten-qubit noisy quantum circuits with
various error models as well as executing four-qubit circuits with up to ten layers of two-qubit gates
on a superconducting quantum processor. Our results pave the way towards the optimization-based
quantum device and algorithm design in the intermediate-scale quantum regime.

Introduction.—In quantum computation, errors caused
by decoherence and imperfect controls form the main ob-
stacle to meaningful applications, such as solving inte-
ger factorization and quantum chemistry problems [1–4].
Evaluating the error severity in quantum computation is
essential for improving the design of device [5–7], opti-
mizing control parameters [8], and minimizing errors with
mitigation protocols [9–11]. Various schemes of quantum
system characterization have been developed. Random-
ized benchmarking [12–21] and quantum process tomog-
raphy (QPT) [22–29] can measure the average gate fi-
delity and full information of a noisy quantum channel,
respectively. These two methods are efficient in systems
with a few qubits. Cross-entropy benchmarking [30, 31]
and heavy output generation [32, 33] are used to ver-
ify a multi-qubit system but cannot be directly applied
to circuits that are unsimulatable on classical comput-
ers. We can infer the performance of a large system by
dividing it into tractable subsystems and characterizing
each subsystem individually [11, 31, 34–37]. In this ap-
proach, given finite-size subsystems, not all crosstalk ef-
fects are incorporated. Cycle benchmarking is able to
account for spatial correlation by repeating certain pat-
terns of gates [38]. The temporal correlation of noise
is another factor that usually limits the effectiveness of
characterization techniques [29, 39–45].

Many quantum algorithms utilize multi-qubit and deep
quantum circuits. Even for variational quantum compu-
tation, we need to implement hundreds of gates on tens
of qubits [46–50]. In this paper, we propose an intuitive
method that can efficiently characterize large quantum
circuits, in the presence of both spatial and temporal er-

ror correlations. The resource cost of our method scales
polynomially with the circuit size.

We take the quadratic loss function of computation
error [51] as the measure of error severity, which is

LR(F ) ≡ 1
|R|

∑
R∈R

Error(F ,R)2. (1)

Here Error(F ,R) ≡ com(F ,R) − comef(F ,R) is the
computation error, com(F ,R) and comef(F ,R) are re-
spectively results (means of an observable, i.e., a function
f of measurement outcomes) in the actual noisy compu-
tation and error-free computation, and (F ,R) specifies
a quantum circuit. This loss function characterizes er-
rors in a set of circuits with the same circuit frame F
[see Fig. 1(a)] in the computation of f , which can be
generalized to multiple circuit frames and observables by
adding up error losses of different F and f . The circuit
frame includes the qubit initialization, measurement and
multi-qubit entangling gates (e.g., controlled-NOT and
controlled-phase gates), which are usually more error-
prone compared with single-qubit gates. We focus on the
case that entangling gates are all Clifford. Frame opera-
tions are chosen to contain the noisiest components in the
circuit and together with unitary single-qubit gates they
form a universal set of operations for quantum computa-
tion. In the circuit set, each one contains a different con-
figuration of single-qubit gates denoted byR. R is the set
of single-qubit gate configurations. When R = U, single-
qubit gates can be any unitary transformations, and the
summation should be taken as integration with respect
to Haar measure [52]; when R = C, single-qubit gates
are all Clifford. Our approach is particularly relevant to
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FIG. 1. (a) An example quantum circuit. The circuit (F ,R)
consists of a circuit frame F and single-qubit unitary gates R.
Single-qubit gates are the green dashed squares, and all other
operations form the frame. To evaluate LR(F ), the frame
is always the same, but we sample random configurations of
single-qubit gates. (b) The noise model. The system (Sys.)
formed by qubits and the environment (Env.) are initialized
in the state ρi. Following the initialization, there is a sequence
of completely-positive maps applied. The map Mτ describes
the evolution applied at the time τ to realize a layer (column)
of quantum gates, which actually acts on the system and envi-
ronment because of imperfections. Finally, we implement the
measurement on each qubit. The operator of observable is
Ef , which acts on both the system and environment because
of imperfections.

variational quantum algorithms which treat single-qubit
gates as variables [3, 53, 54], and one can choose the cir-
cuit frame and observable accordingly. Loss functions in
this form can be used to determine parameters in the
learning-based quantum error mitigation [51, 55, 56].

In this paper, we demonstrate that the quadratic er-
ror loss LU(F ) (i.e., R = U) is a good objective func-
tion and can be efficiently evaluated when the circuit
is large. By sampling random circuits, we study the
statistics of Error(F ,R) in experiments on a quantum
device with four superconducting qubits and numerical
simulations with up to ten qubits using various error
models. We find that the error distribution is approx-
imately Gaussian with zero mean when general-unitary
circuits are uniformly sampled from R ∈ U according to
Haar measure, i.e. LU(F ) is the only value that we need
for characterizing the error statistics [57]. Computing
the error-free result comef(F ,R) is impractical for large
general-unitary circuits but efficient for Clifford circuits,
according to the Gottesman-Knill theorem [1, 58–60]. We
prove LU(F ) = LC(F ) under the assumption that errors
in single-qubit gates are gate-independent, i.e., we can
obtain LU(F ) by only sampling Clifford circuits. Note

that we do not need any assumption on frame-operation
errors. In addition to the analytical proof, the equiva-
lence between unitary sampling and Clifford sampling is
verified in both experiments and numerical simulations,
by confirming that error losses from two sampling ap-
proaches are within statistical fluctuations of each other.

Formalism and Clifford sampling.—In a quantum cir-
cuit, we can draw gates applied in parallel in the same
layer (column), see Fig. 1(a). For example, the gray
box is the fourth layer, which contains a T gate and
a controlled-phase gate. When gates are error-free, the
overall map of the fourth layer is Mef

4 = [T ⊗ ΛZ ⊗ I],
where an operator U acts on the density matrix ρ by
[U ](ρ) = UρU†, and I is the identity operator of a qubit.
Because of the noise, the actual implementation leads to
a different map M4, which acts on not only qubits but
also the environment. This is a general formalism of er-
rors in the quantum computation, including both spatial
and temporal correlations. The temporal correlation is
caused by the environment [61]. According to this for-
malism, we can express the actual computation result
with error as com(F ,R) = Tr[EfMN · · ·M2M1(ρi)] for
an N -layer circuit [see Fig. 1(b)]. Here, ρi, Ef and Mτ

depend on F and R. Qubits are measured in the compu-
tational basis, and the outcome is a binary vector µ. The
corresponding measurement operator is Eµ. We consider
the case that the computation result is the mean of a real
function f(µ), then Ef =

∑
µ f(µ)Eµ.

We can express the error-free map Mef
τ as a prod-

uct of frame gates Gef
τ and single-qubit gates Ref

τ , i.e.,
Mef

τ = Gef
τ Ref

τ . For example, we have Gef
4 = [I ⊗ΛZ ⊗ I]

and Ref
4 = [T ⊗ I⊗3]. The actual map can always be

expressed in the form Mτ = Jτ
(
Ref
τ ⊗ [11E]

)
Kτ . Here,

11E is the identity operator of the environment, and Jτ
and Kτ are maps on both the system and environment.
Mτ in this form is a linear map for matrix entries of
Ref
τ . Therefore, we have the tensor form of the quantum

computation com(F ,R) = Tr[(R ⊗ R
∗)F ], where R is

the tensor product of error-free single-qubit gates [e.g.,
R = H⊗3 ⊗ T ⊗RZ(θ)⊗ · · · in Fig. 1(a), in which gates
are listed from top to bottom then left to right], and
F is a tensor describing the effect of frame operations
(see Ref. [62]). Errors are single-qubit-gate-independent
(i.e., R-independent) if ρi, Ef , Jτ and Kτ (for all τ) are
constants. Then Error(F ,R)2 is a homogeneous poly-
nomial of degree 2 in both matrix elements of single-
qubit gates and their Hermitian conjugates. The Clifford
group is a unitary 2-design [14, 63, 64], and therefore
LU(F ) = LC(F ). We remark that, not only the second-
but also the first- and third-order moments of the error
distribution in unitary sampling can be evaluated using
the Clifford sampling, because the Clifford group is also
a 1-design and 3-design [65, 66].

In the Clifford sampling, we uniformly sample each
single-qubit gate in the circuit from the Clifford group.
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FIG. 2. Numerical results. (a) The unitary sampling of
Error(F ,R). The red curve denotes the Gaussian distribu-
tion N (0, LU). (b) The Clifford sampling of Error(F ,R). A
ten-qubit circuit with a hundred two-qubit gates is used to
compute the mean of a Pauli operator. The error rate per
gate is 0.002.

We compute the error loss using the Monte Carlo sum-
mation method. There are two approaches. In the mean-
value approach, we run each random circuit for multiple
times on the actual quantum computer and in the sim-
ulation on a classical computer to estimate com(F ,R)
and comef(F ,R), respectively. Then, we can compute
the error loss directly according to its definition. This
approach is used in our experiments and numerical simu-
lations. In the single-run approach, each sampled random
circuit only runs for once or twice (see Ref. [62] for the
detailed procedure). Then, the variance (due to finite
sampling) of the LC(F ) estimator is upper bounded by
4‖Ef‖4/Ns, where 4Ns circuit runs are implemented on
the quantum computer and 4Ns circuit runs are classi-
cally simulated. We remark that usually the observable
Ef scales polynomially with the qubit number in quan-
tum simulation algorithms [3, 67].

Generalizations.—The error loss can be readily gen-
eralized to the multi-observable case, where one takes
average of the quadratic error loss functions with dif-
ferent observables. One application is for characterizing
the probability distribution of measurement outcomes in
the computational basis by taking measurement opera-
tors Eµ as observables. We can use this approach to
assess the severity of error for any algorithm that qubits
are measured in the computational basis. An alternative
approach is the final-state fidelity loss [51]. We leave the
detailed discussion in Ref. [62].

We conclude that LU(F ) = LC(F ) by assuming single-
qubit-gate errors are gate-independent. If errors are gate-
dependent, the equality does not hold in general. Then
we can more reliably estimate LU(F ) by sampling hybrid
circuits, in which not all single-qubit gates are Clifford
and a few of them are general unitaries. In the first-order
correction, LU(F ) =

∑NR
i=1 LHi − (NR − 1)LC, where Hi

denotes that only the i-th gate in the total NR single-
qubit gates is general unitary. We remark that Clifford-
dominated circuits can be efficiently simulated using clas-
sical computer: The cost scales polynomially with circuit
size given a fixed number of non-Clifford gates [68]. See
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FIG. 3. Experiment setup. (a) Diagram of four Xmon qubits
coupled to a central bus resonator. (b) A single-qubit gate is
realized using a Rxy gate followed by a Rz gate. The Rxy
gate has two parameters θxy and φxy, which are controlled
by the amplitude and phase of XY pulse (red). The pulse
length is 40 ns. The Rz gate has only one parameter θz,
which is controlled by the amplitude of the Z pulse (blue),
whose length is 10 ns. (c) Pulse sequences (square Z pulse
in blue and sinusoidal microwave in red for each qubit) for
the two-qubit gate Uphase. A short Z pulse is applied on one
of the qubits before the long Z pulse to align the x-axes of
their Bloch spheres. We note that the driving field (Ωi on the
qubit Qi) is different in Uphase gates on different qubits. The
length of Uphase is around 300 ns. Phases of driving fields are
inverted at the middle of the gate. (d) The quantum circuit
used to demonstrate the Clifford sampling.

Ref. [62] for more details.
Numerical results.—We implement numerical simula-

tions of quantum circuits using QuESTlink [69, 70] for
various error models, circuit frames, obervables and up
to ten qubits, see Ref. [62]. Here, we only show results
of the depolarizing model. In Fig. 2(a), we plot the dis-
tribution of Error(F ,R) in the unitary sampling, and we
can find that the distribution is approximately Gaussian.
This conclusion holds in all our numerical simulations
and experiments.

The error distribution is non-Gaussian in the Clifford
sampling: the distribution is concentrated at several val-
ues of the error, and most of the probability is concen-
trated at zero, as shown in Fig. 2(b). We can under-
stand this result as follows [51]. For Clifford circuits,
if the observable to be measured Ef is a Pauli oper-
ator as in our case, comef(F ,R) takes three values 0
or ±1. For most of the cases, comef(F ,R) = 0, and
we always have com(F ,R) = 0 if errors are Pauli, i.e.,
Error(F ,R) = 0. Therefore, for Pauli errors, many Clif-
ford circuits are error-insensitive [71], which is a cause of
the non-Gaussian distribution.

Experimental results.—To demonstrate the feasibility
and usefulness of Clifford sampling in an actual quan-
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tum computer, we implement it on a superconducting
quantum device, which is illustrated in Fig. 3(a). Four
frequency-tunable Xmon qubits (Q1 ∼ Q4) are coupled
to a central bus resonator, which mediates the effec-
tive interaction between qubits for implementing two-
qubit gates. For every single-qubit gate R ∈ U(2),
we can decompose it into two experimentally feasi-
ble gates R = eiαRz(θz)Rxy(θxy, φxy), as shown in
Fig. 3(b), where α, θz, θxy and φxy are real numbers.
For two-qubit gates, we use the Clifford dressed-state
gate Uphase, which is generated by tuning two qubits
into near resonance with microwave driving field be-
ing applied on each qubit dynamically [see Fig. 3(c)]
and can be expressed as diag(1,−i,−i, 1) in the basis
{|++〉, |+−〉, |−+〉, |−−〉} [72]. We can implement the
gate Uphase between any pair of qubits, therefore we have
six gate setups for four qubits. See Ref. [62] for device
parameters and detailed implementation of gates.

Before applying Clifford sampling, we benchmarked fi-
delities of single-qubit gates and two-qubit gates. Fi-
delities of six Uphase setups measured using QPT are
95% ∼ 97%. In some circuits, two Uphase are applied in
parallel. Because of crosstalk, gate fidelities are changed
slightly in parallel operations. We use randomized bench-
marking to measure gate fidelities of Rxy and Rz, which
is implemented on each qubit individually as well as si-
multaneously on all qubits. Both approaches yield no
less than 99.3% fidelities for Xπ, Yπ, Xπ/2, and Zπ gates,
where Pθ = e−i

θ
2P with P representing the Pauli oper-

ator. The average error rate of single-qubit gates is at
least an order of magnitude lower than two-qubit gates,
thus we can safely infer that most of the noise is intro-
duced by Uphase. The gate performance can be improved
by optimization based on Clifford sampling. See Ref. [62]
for benchmarking and optimization data.

We use the circuit in Fig. 3(d) as an example to im-
plement the Clifford sampling. The observable to be
measured is the probability of Q1 being in |0〉, i.e.,
Ef = |0〉〈0|1 = (I1 + Z1)/2. Given a specific circuit
(F ,R), we run the circuit for 1000 times in order to es-
timate the probability in |0〉. The probability obtained
in the experiment is P exp

0 , and its error-free value com-
puted using the classical computer is P ef

0 . We note that
P exp

0 has been corrected for readout errors [73]. Then,
the computation error is Error = P exp

0 − P ef
0 .

Both unitary sampling and Clifford sampling are im-
plemented in the experiment. For each case, 20000 ran-
dom configurations of single-qubit gates R are gener-
ated. In the unitary sampling, the error distribution is
Gaussian as shown in Fig. 4(a), the same as in numeri-
cal simulations. However, in the Clifford sampling, the
error distribution is continuous as shown in Fig. 4(b),
which is obviously different from the discrete distribu-
tion concentrated at several peaks shown in Fig. 2(b). In
Ref. [62], we give numerical results of a composite error
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FIG. 4. Experimental results. (a) The unitary sampling of
Error(F ,R). The red curve denotes the Gaussian distribu-
tion N (0, LU). (b) The Clifford sampling of Error(F ,R). (c)
Moments of two sampling approaches. µn = E[Errorn] is the
nth-order moment, and µG

n is the moment of N (0, LU). The
quantum circuit used to generate data in (a), (b) and (c) is in
Fig. 3(d). (d) Error losses of unitary sampling versus Clifford
sampling for 50 randomly generated frame operation configu-
rations with one to ten layers of two-qubit gates. Each layer
has one or two Uphase gates. When only one gate is applied,
we protect the other two qubits from dephasing by applying
dynamically drive fields [72]. The observable is |0〉〈0| for one
of four qubits. See Ref. [62] for details. The error bar denotes
the standard deviation due to finite sampling.

model (a combination of coherent and amplitude damp-
ing errors) and the experimentally-measured model [74]
(from QPT). The error distribution in Clifford sampling
for these two models are in qualitative agreement with
the experimental result. We plot moments up to the
14th-order in Fig. 4(c): Moments of the unitary sam-
pling are consistent with the Gaussian distribution, and
moments of the Clifford sampling are obviously larger be-
yond the second-order moment [71]. Although two dis-
tributions are different, their 2nd-order moments are the
same up to the sampling noise.

In addition to the circuit in Fig. 3(d), we implemented
the experiment for 50 randomly generated circuit frames
F . The error loss (LU or LC) is estimated by sampling
500 single-qubit gate configurations R for each F . The
result is plotted in Fig. 4(d). Almost all data points are
within 2σ (95.45% confidence interval) from the diagonal
line, which represents LU = LC.

Discussion.—We propose to characterize quantum cir-
cuits executed on a noisy device by evaluating the
quadratic error loss and fidelity loss using the Clifford
sampling method. In these two loss functions, all the
temporal and spatial correlations are automatically taken
into account by treating the entire circuit as a whole.
We demonstrate the Clifford sampling method with both
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numerical simulations and experiments on a supercon-
ducting device. We prove that fully-Clifford sampling is
sufficient as long as the noise is independent of single-
qubit gates. This conclusion holds as well in the pres-
ence of correlated readout error [75], see Ref. [62] for ex-
perimental result of a four-qubit observable. Weak gate
dependence can be tackled using hybrid sampling. Ex-
perimental results do not show the significant effect of
gate dependence. We observe a continuous distribution of
the computation error in Clifford sampling in the exper-
iment, whereas some simple error models such as Pauli
error models predict a discrete distribution. This result
suggests that these models cannot correctly describe the
noise in our experiment. One can verify an error model
and determine its parameters by modifying the error loss
and replacing the ideal computation result with the result
of error model.

In addition to characterizing quantum circuits, our
method can find application in optimizing their perfor-
mance. We experimentally implemented the optimiza-
tion of a Rabi frequency driving two-qubit gates in a
set of four-qubit four-depth circuits. The error losses
decrease by more than 10% by using Clifford sampling,
agreeing well with infidelity measured by QPT [76]. In
the single-run approach, the sampling cost scales poly-
nomially with the circuit size. Therefore, our method is
promising in the multi-parameter optimization for large-
scale quantum circuits. Other than optimizing param-
eters, our method can provide ground for choosing cir-
cuits. The circuit for a computation task may not be
unique. Given a noisy quantum device, one can select
a working circuit among theoretically equivalent circuits
based on our loss functions. A similar idea was proposed
in Ref. [56]. Compared to metrics assessing the gen-
eral performance of the device, such as the quantum vol-
ume [32, 33, 48], our scheme is more application-oriented,
i.e., each characterization experiment reflects the likeli-
hood that the device performs well in solving a partic-
ular problem. Consequently, the optimization based on
our characterization is tailored for specific problems and
corresponding circuits.
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M. Kjaergaard, T. Menke, R. Winik, D. Kim, B. M.
Niedzielski, A. Melville, J. L. Yoder, C. F. Hirjibehedin,
T. P. Orlando, S. Gustavsson, and W. D. Oliver, “Char-
acterizing and optimizing qubit coherence based on squid
geometry,” Phys. Rev. Applied 13, 054079 (2020).

[8] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jef-
frey, A. Megrant, J. Mutus, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Marti-
nis, “Optimal quantum control using randomized bench-
marking,” Phys. Rev. Lett. 112, 240504 (2014).

[9] Y. Li and S. C. Benjamin, “Efficient variational quan-
tum simulator incorporating active error minimization,”
Phys. Rev. X 7, 021050 (2017).

[10] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mit-
igation for short-depth quantum circuits,” Phys. Rev.
Lett. 119, 180509 (2017).

[11] S. Endo, S. C. Benjamin, and Y. Li, “Practical quantum
error mitigation for near-future applications,” Phys. Rev.
X 8, 031027 (2018).

[12] J. Emerson, R. Alicki, and K. Życzkowski, “Scalable
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