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Gene expression is a stochastic process. Despite the increase of protein numbers in growing cells,
the protein concentrations are often found to be confined within small ranges throughout the cell
cycle. Generally, the noise in protein concentration can be decomposed into an intrinsic and an
extrinsic component, where the former vanishes for high expression levels. Considering the time
trajectory of protein concentration as a random walker in the concentration space, an effective
restoring force (with a corresponding “spring constant”) must exist to prevent the divergence of
concentration due to random fluctuations. In this work, we prove that the magnitude of the effective
spring constant is directly related to the fraction of intrinsic noise in the total protein concentration
noise. We show that one can infer the magnitude of intrinsic, extrinsic, and measurement noises of
gene expression solely based on time-resolved data of protein concentration, without any a priori
knowledge of the underlying gene expression dynamics. We apply this method to experimental data
of single-cell bacterial gene expression. The results allow us to estimate the average copy numbers
and the translation burst parameters of the studied proteins.

INTRODUCTION8

Gene expression in all forms of life is subject to noise9

[1–7]. Experimentally, stochastic gene expression has10

been intensively studied, mostly in growing cells with ex-11

ponentially growing cell volume [8–12] in which the copy12

numbers of mRNAs and proteins in general double on13

average during the cell cycle, as widely observed in bac-14

terial and eukaryotic cells [8, 13–15]. To reduce cell cycle15

effects, a more biologically relevant protocol to quantify16

the stochastic degree of gene expression is to calculate the17

variability of concentration because most genes in prolif-18

erating cells exhibit approximately constant protein con-19

centrations throughout the cell cycle over multiple gen-20

erations [13, 16–21]. In yeast and mammalian cells, most21

genes also exhibit approximately constant mRNA con-22

centrations throughout the cell cycle [14, 22, 23].23

Considering the time trajectory of protein concentra-24

tion as a one dimensional random walker in the space of25

concentration, it must be subject to an effective restor-26

ing force to prevent the divergence of concentration in27

the long time limit (note that cell growth contributes to28

this restoring force via the effect of dilution, as discussed29

extensively in Ref. [19]). However, little is known about30

how the strength of this restoring force is related to the31

stochastic nature of protein concentration. In this work32

we show that one can in fact infer the contribution of33

intrinsic and extrinsic noise (which we will define later)34

to the total gene expression noise from the properties of35

the restoring force. Previous works on solving this chal-36

lenge often rely on particular models of the underlying37

dynamics of gene expression [24–27]. Here we develop a38

novel protocol which is, in contrast, insensitive to many39

of the details of the gene expression dynamics, and is40

thus applicable to a broad class of models. The proto-41

col only relies on analysis of time-series data of protein42

concentrations. We expect it to be applicable to expo-43

nentially growing cells such as bacteria, yeast and cancer44

cells [8–12].45

In the following, we first introduce a general framework46

to study the variability of mRNA and protein concentra-47

tions in growing cells. Within the framework, the initi-48

ation rates of transcription and translation can be age-49

dependent (here, we define age as the elapsed time since50

cell birth), e.g., due to gene dosage effects as well as more51

complex cell cycle dependencies [15]. We show that inde-52

pendent of the details of the gene expression dynamics,53

the variances of mRNA and protein concentrations can54

always be decomposed into an extrinsic component and55

an intrinsic component. In the large cell volume limit, the56

intrinsic noise vanishes while the extrinsic noise remains57

finite [28]. We then introduce our protocol to extract the58

fraction of intrinsic noise, extrinsic noise and measure-59

ment noise in the total noise of protein concentrations60

and finally apply the method to experimental data of61

bacterial gene expression.6263

Decomposition of noise.—For simplicity, we consider a64

cell growing exponentially at a constant growth rate µ65

with a constant doubling time T = ln(2)/µ, see Fig. 1.66

When the cell divides, the cell volume divides symmet-67

rically, therefore the molecules are assumed to be seg-68

regated binomially and symmetrically between the two69

daughter cells [3]. Since for both bacterial and eukary-70

otic cells the degradation times of many proteins are71

longer than the cell cycle duration [29], we consider a72

non-degradable protein in the main text. Our results73

are equally valid for proteins with a finite degradation74

rate after some slight modifications (Supplementary In-75

formation, SI A) [30]. Our results are also robust against76
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FIG. 1. The cell volume V grows exponentially in time with
a growth rate µ and τ is the cell age. k1 and k2 are the
transcription rate and translation rate per cell volume which
can be age-dependent. The chemical reactions of gene ex-
pression are summarized on the right. Nm and Np are the
absolute mRNA and protein copy numbers respectively. τm
is the lifetime of mRNA using which one can define the trans-
lation burst parameter βτm (the average number of proteins
produced in the lifetime of a single mRNA).

fluctuating growth rates and doubling times as we show77

in SI B. We allow the initiation rates of transcription and78

translation per cell volume, k1, k2, to be time dependent79

and, for example, they can exhibit stochastic dynamics.80

One can further express k2 = βm where m is the mRNA81

concentration and β is the initiation rate of translation82

per mRNA. Mechanistically β is determined by the bind-83

ing rate of ribosomes to mRNAs and largely determined84

by the concentration of ribosomes, which is roughly con-85

stant throughout the cell cycle [20].86

Consider an experiment where one tracks a single lin-87

eage of cells over multiple generations, records the data88

of protein concentrations p uniformly in time with reso-89

lution ∆t, and finally computes the resulting variance of90

concentrations based on all collected data. We find that91

the resulting variance of protein concentration σ2
p can be92

generally decomposed into three components (SI A):93

σ2
p =

cov(k2, p)

µ
︸ ︷︷ ︸

Upstream noise

+
〈 k2
2µV

〉

︸ ︷︷ ︸

Poisson noise

+
p(T )

4 ln(2)Vb
︸ ︷︷ ︸

Partitioning noise

. (1)

Here cov(k2, p) = 〈k2p〉−〈k2〉〈p〉 and 〈··〉 represents aver-94

age over time. The first part represents the noise due to95

a fluctuating upstream factor, namely, the initiation rate96

of translation per cell volume. One important source of97

upstream noise is the fluctuation in mRNA copy num-98

ber [28]. The second term represents the noise due to99

the stochastic production process which we denote as100

Poisson noise here. The last term stems from the ran-101

dom partitioning during cell division where T = ln 2/µ is102

the doubling time. The Poisson noise and the partition-103

ing noise scale with the inverse of cell volume and their104

contributions to the square of the coefficient of variation105

(variance/mean2) vanish for highly expressed proteins.106

In contrast, the upstream noise stems from the fluctua-107

tion in the translation rate per cell volume and it does not108

vanish in the large cell volume limit. We therefore define109

the sum of the Poisson noise and the partitioning noise as110

intrinsic and the upstream noise as extrinsic, consistent111

with previous works [28, 31]. We numerically confirm the112

validity of the noise decomposition for multiple gene ex-113

pression dynamics including stochastic transcription and114

translation rate (SI B, Fig. S1).115

We remark that the definition of extrinsic noise in our116

framework is different from the extrinsic noise inferred117

from the dual-reporter setup [1, 32], which is defined118

as the correlated noise of two identical genes controlled119

by the same promoters. The possible sources of extrin-120

sic noise in the dual-reporter setup belong to a subset121

of those of the extrinsic noise in our framework which122

includes all possible upstream factors correlated or not123

across genes. Therefore, the extrinsic noise from the124

dual-reporter method is typically smaller than the ex-125

trinsic noise defined in our current framework, as we will126

discuss further later.127
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FIG. 2. (a) Given a time series of protein concentration, we
first compute the discrete time derivative of protein concen-
tration ∆p/∆t with a time interval ∆t. (b) Next, we perform
a linear fit of ∆p/∆t against the current protein concentration
p and consider the absolute value of the fitted slope. In the
case of negligible measurement noise, the fraction of intrin-
sic noise is the ratio between the slope and growth rate. (c)
For experimental data with measurement noise, we compute
∆p/∆t for multiple time intervals ∆t and repeat the protocol
in (b) for each time interval. Finally, we perform a linear fit
of the normalized slopes against 1/∆t and infer the fraction
of intrinsic noise from the intercept.

128

129

Extracting the fraction of intrinsic and extrinsic130

noise.—In the following, we discuss a protocol to dis-131

entangle the contribution of intrinsic and extrinsic noise132

to the total noise based on the time trajectory of con-133

centration [Fig. 2(a, b)]. We consider a discrete incre-134

ment of protein concentration over a small time window,135

∆p(t) = p(t+∆t)− p(t), which can be expressed as136

∆p(t) =
∆Np(t)

V (t)
− µp(t)∆t, (2)

where ∆Np(t) is a random variable from a Poisson dis-137

tribution with mean k2(t)V∆t assumed constant within138
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FIG. 3. (a) Simulation of a constitutively expressed gene.
(Upper) We compare the predicted fraction of intrinsic noise
(y axis) to the measured value (x axis). (Bottom) An example
of the raw numerical data with the binned data shown as well
(red circles). The dashed line is the linear fit of the raw data.
The same analysis also applies to panel (b). Here k1 = 10.
(b) Simulation of a transcriptional bursting gene with kon =
10, koff = 10, k1 = 20. In all upper panels, the doubling
time T = 60, τm = 10, and β is varied so that log10 β =
−2,−1.5,−1,−0.5. In all bottom panels, log

10
β = −0.5. We

compute the time-derivative of protein concentration with a
time interval ∆t = 0.5. The errorbars are computed as the
standard deviation of 5 independent simulations and in each
simulation, 103 cell cycles are tracked.

the small time interval ∆t. The second term on the right139

side arises from dilution due to cell growth. The pro-140

tein concentration fluctuates but does not diverge in the141

long time limit, therefore we can make an analogy with142

a Brownian particle attracted to a fixed point with a143

linear restoring force equal to −kx where k is the spring144

constant and x is the particle position relative to its equi-145

librium point. In the case of a Brownian particle, one can146

find the spring constant of the restoring force as the slope147

in the linear fitting of the discrete velocity ∆x/∆t vs. x.148

In the case of protein concentration, one can do a similar149

analysis by linearly fitting the discrete time derivative of150

protein concentration ∆p/∆t vs. p. Considering a least151

square linear fitting, the slope of the linear fitting is found152

to be153

S ≡ −
cov

(∆p(t)
∆t

, p(t)
)

σ2
p

= µ−
cov(k2(t), p(t))

σ2
p

. (3)

where we have used Eq. (2). If the covariance between154

the translation rate and protein concentration vanishes,155

the spring constant of the restoring force is simply the156

growth rate. Combined with Eq. (1), we find that the157

slope is proportional to the growth rate and the propor-158

tional constant is precisely the fraction of intrinsic noise159

in the total protein concentration noise variance:160

S = µ
(
1−

cov(k2(t), p(t))

µσ2
p

)
= µfin. (4)

The above equation shows that we can extract the frac-161

tion of intrinsic noise fin in the total noise by linearly162

fitting the time derivative of the protein concentration163

against the current protein concentration without any a164

priori knowledge of the underlying gene expression dy-165

namics. Extrinsic noise reduces the slope in the lin-166

ear fitting which precisely equals the growth rate µ in167

the absence of extrinsic noise. An extended discussion168

along with an intuitive argument on the effects of extrin-169

sic noise based on a Langevin equation is provided in SI170

F. We remark that our protocols are also applicable to171

nongrowing cells with a constant cell volume given the172

lifetime of the studied protein is known (SI A).173

Analysis of synthetic data.—We test Eq. (4) on syn-174

thetic data, first considering a constitutively expressed175

gene where the initiation rate of transcription per cell176

volume k1 is constant as is the initiation rate of trans-177

lation per mRNA β. This assumption corresponds to178

the case in which both RNA polymerase and ribosomes179

are limiting for gene expression, as discussed in detail in180

Ref. [19]. We compute fin numerically using Eq. (1)181

and compare it with the prediction from Eq. (4), finding182

excellent agreement [Fig. 3(a)]. To test the robustness of183

our protocol, we also verify our theoretical results on var-184

ious other gene expression dynamics: (1) the scenario of185

transcriptional bursting where a gene switches from “off”186

state to “on” state with rate kon and vice versa with rate187

koff [Fig. 3(b)]; (2) a gene with a constant transcription188

rate proportional to the gene number which doubles in189

the middle of the cell cycle [Fig. S2(a)]; this scenario190

corresponds to the situation when the gene copy num-191

ber is the sole limiting factor of transcription [19]; (3)192

a gene with a transcription rate modulated throughout193

the cell cycle due to a finite period of DNA replication194

[Fig. S2(b), see details in SI E]; (4) a gene with a fluc-195

tuating transcription rate [Fig. S2(c)]; (5) a gene with a196

fluctuating translation rate per mRNA [Fig. S2(d)]. In197

all cases, the predicted fractions of intrinsic noise match198

the actual values well. We also find that in all cases in-199

creasing the translation rate per mRNA β increases the200

fraction of extrinsic noise as the effects of upstream noise201

are amplified, consistent with the analytical results of202

constitutively expressed genes (SI C, D). We have also203

confirmed the robustness of our results against the num-204

ber of cell cycles sampled and the effects of fluctuating205

growth rates and division volumes (Fig. S3). Note that206

in the case of a fluctuating growth rate one also has to207

account for the correlation between the protein concen-208

tration and growth rate, as discussed in SI B.209210

In our framework the extrinsic noise is extracted from211

the time trajectory of the protein concentration of a sin-212
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FIG. 4. (a) We compute the time derivative of protein concentration as a function of the current protein concentration using
data from Ref. [33] and the measured slope normalized by the growth rate is 1.90. The time interval used is ∆t = 1 min and
the growth rate is µ = 0.0213 min−1. (b) We repeat the analysis using another data from Ref. [8] where the measured slope
normalized by the growth rate is 0.45. Here ∆t = 1 min and µ = 0.0327 min−1. (c) We adjust the time interval to compute
the time derivative of protein concentration and compute the slope in the linear fit of ∆p/∆t vs. p. The normalized slope is
linearly fitted as a function of the inverse of the time interval. The fraction of intrinsic noise in the total noise can be calculated
from the intercept of the linear fit. We also infer the fraction of measurement noise in the total noise from the slope of the
linear fit. (d) We summarize the calculated fractions of different noise for the two data sets. fin: the fraction of intrinsic noise.
fex: the fraction of extrinsic noise. fme: the fraction of measurement noise.

gle gene, which is distinct from that of the dual-reporter213

method. If the two genes in the dual-reporter setup share214

the same fluctuating translation rate k2(t), the two defi-215

nitions of extrinsic noise will coincide [SI G, Fig. S6(a)].216

However, if the correlated noise between the two genes217

is at the transcriptional level, the extrinsic noise inferred218

from the dual-reporter will be smaller than the one ex-219

tracted from our protocol, which we confirm numerically220

[Fig. S6(b)].221

Analysis of experimental data.—Experimentally, the222

measured protein concentration is always augmented by223

measurement noise. To model the effects of measurement224

noise, we assume the measured protein concentration at225

time t to equal226

p(t) = p0(t) + η(t) (5)

where p0(t) is the actual protein concentration and η(t)227

is the measurement noise term assumed uncorrelated be-228

tween different measurements. We will revisit this as-229

sumption later on and show that the datasets we an-230

alyzed are consistent with it. The covariance between231

∆p/∆t and p becomes cov(∆p

∆t
, p) = cov(∆p0

∆t
, p0) −232

σ2
η/∆t. Compared with Eq. (4), the slope in the lin-233

ear fitting of ∆p/∆t vs. p is modified to234

S ≡ −
cov(∆p

∆t
, p)

σ2
p

= µ
(
fin +

σ2
η

µσ2
p∆t

)
. (6)

We confirm Eq. (6) using numerical simulations with235

artificial measurement noise. In this case since σ2
η is as-236

signed and fin is known, we can directly compare the left237

and right sides of Eq. (6), obtaining good agreement (SI238

H, Fig. S7). Experimentally, the fluorescence level may239

not accurately reflect the instantaneous protein number240

due to a finite maturation time of the fluorescent protein.241

We have confirmed that the effects of a finite maturation242

time does not affect our results for experimentally rele-243

vant values of the maturation times [34] (SI I, Fig. S8).244

We analyze two datasets of E. coli growth. In both,245

cells are exponentially growing and a fluorescent protein246

is constitutively expressed [8, 33]. A single lineage of247

cells is tracked for about 100 generations with cell vol-248

ume and fluorescence level measured simultaneously. In249

both cases, the time interval between two consecutive250

data points is 1 min. To compute fin, we increase the251

time interval to compute ∆p/∆t and find the slopes in252

the linear fitting of ∆p/∆t vs. p for each time interval253

[see examples for ∆t = 1 min in Fig. 4(a, b)]. We then254

linearly fit the resulting slopes as a function of 1/∆t [Fig.255

2(c)] and the results agree well with the prediction of Eq.256

(6) [Fig. 4(c)]. Notably, this allows us to infer both fin as257

the intercept of the linear fit, and the fraction of measure-258

ment noise from the slope. The results are summarized259

in Fig. 4(d). To justify the assumption of uncorrelated260

measurement noise, we show that the scaling with ∆t in261

Eq. (6) is violated for correlated measurement noise (SI262

H, Fig. S7).263

In this way we find that the ratio between the mea-264

surement noise and the total noise in the two data sets265

are respectively 17% and 10% in terms of their standard266

deviations, which are the square roots of the numbers267

in Figure 4(d). We can further use our analytic results268

for constitutively expressed genes as used in these exper-269

iments to estimate the average copy numbers of proteins270

at cell birth and the translation burst parameter βτm (see271

Eqs. S28, S29 in SI C) [31]. We find that Np ≈ 230 at cell272

birth, βτm ≈ 1.37 for Data in Fig. 4(a), and Np ≈ 210 at273

cell birth, βτm ≈ 2.81 for Data in Fig. 4(b). The differ-274

ences between the two data sets are presumably due to275

the different strains and promoters. We note that if the276

normalization constant to convert the fluorescence level277

to protein number is known, one can also compute the278

partitioning noise based on Eq. (1) and the Poisson noise279
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as the remaining component of the intrinsic noise, which280

is confirmed using the synthetic data [Fig. S1(g)].281

Summary and outlook.—In this work, we start from a282

general framework of stochastic gene expression in expo-283

nentially growing cells. Our approach allows us to take284

into account the cell growth and division explicitly and285

study the variability in protein concentrations, directly286

relevant to experiments on proliferating cells such as bac-287

teria, yeast or cancer cells. We derive a broadly appli-288

cable decomposition of the protein concentration noise,289

finding that the total noise can be expressed as the sum290

of the noise due to upstream factors, the Poisson noise291

due to the random process of production and degrada-292

tion, and the noise due to random partitioning during cell293

division. These results are independent of the underlying294

details of the particular dynamics of mRNA and protein295

synthesis. Given a time trajectory of protein concentra-296

tion, one may linearly fit the discrete time derivative of297

protein concentration as a function of the protein con-298

centration. We find that the slope of the fit, normalized299

by the growth rate, equals the fraction of intrinsic noise300

in the total protein concentration noise in the absence of301

measurement noise. We verify our theoretical framework302

on synthetic data of protein concentrations for genes with303

various underlying gene expression dynamics.304

Importantly, we generalize our protocol to analyze ex-305

perimental data of E. coli gene expression and show how306

a generalization of the method can simultaneously reveal307

the fraction of measurement noise in addition to that308

of intrinsic and extrinsic noise. Our framework predicts309

that the slope in the linear fitting of the time deriva-310

tive of protein concentration vs. the current protein con-311

centration has a linear dependence on the inverse of the312

time interval used to compute the time derivative, which313

agrees well with the experimental results. Assuming a314

model of a constitutively expressed protein as used in315

these experiments, our approach also allows us to infer316

the average copy numbers of proteins at cell birth as well317

as the translation burst parameter.318

The generality of our approach and the agreement be-319

tween experiments and theoretical predictions suggests320

that the method should be broadly applicable and will321

serve as a useful tool for gene expression analysis includ-322

ing mammalian cells and other non-microbial eukaryotes323

as long as a sufficient number of cell cycles are sampled.324

Our protocol to extract the intrinsic and extrinsic noise325

relies only on the time trajectory of protein concentration326

of a single gene, in contrast to the dual-reporter proto-327

col which relies on measuring protein concentrations of328

two identical genes. Combing our method with the dual-329

reporter method, one can further decompose the extrinsic330

noise into correlated and uncorrelated components. The-331

oretically, our work paves the way to further studies on332

the nature of the widely-observed yet poorly understood333

extrinsic noise in gene expression.334
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