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A liquid of superconducting vortices generates a transverse thermoelectric response. This Nernst
signal has a tail deep in the normal state due to superconducting fluctuations. Here, we present
a study of the Nernst effect in two-dimensional hetero-structures of Nb-doped strontium titanate
(STO) and in amorphous MoGe. The Nernst signal generated by ephemeral Cooper pairs above the
critical temperature has the magnitude expected by theory in STO. On the other hand, the peak
amplitude of the vortex Nernst signal below Tc is comparable in both and in numerous other super-
conductors despite the large distribution of the critical temperature and the critical magnetic fields.
In four superconductors belonging to different families, the maximum Nernst signal corresponds to
an entropy per vortex per layer of ≈ kBln2.

Superconducting vortices are quanta of magnetic flux
with a normal core surrounded by a whirling flow of
Cooper pairs [1]. In a ‘vortex liquid’ a charge current
and an electric field can be simultaneously present and
produce dissipation. This state of matter is prominent in
high-Tc cuprates [2]. One property of the vortex liquid
is a finite Nernst effect (the generation of a transverse
electric field by a longitudinal thermal gradient) [3]. To-
gether with its Ettingshausen counterpart (a transverse
thermal gradient produced by a longitudinal charge cur-
rent), it has been widely documented in both conven-
tional [4] and high-Tc superconductors [5–7]. In the latter
case, the debate has been mostly focused on interpret-
ing the persistence of a Nernst signal above the critical
temperature [7–9]. The vortex origin of the peak signal
below Tc remains undisputed and its quantitative ampli-
tude unexplained. Theoretical tradition has linked the
magnitude of the finite Nernst signal to the motion of
vortices under the influence of a thermal gradient due to
the excess entropy of the normal core [4, 10–12]. As
a consequence, the magnitude of the Nernst response is
expected to strongly vary among different superconduc-
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tors [10–12].

Here we present a study of the Nernst effect in
two superconductors, namely two-dimensional Nb-doped
SrTiO3 and α-MoGe. We will show that the magnitude
of the fluctuating Nernst response above Tc is in agree-
ment with theoretical expectations, but not the ampli-
tude of the vortex Nernst signal in the flux flow regime
below the critical temperature. Putting under scrutiny
available data for other superconductors (with a range of
critical temperatures extending over three orders of mag-
nitude), we find that the observed peak does not exceed a
few µV/K. Available theories [10–12] link the amplitude
of the vortex Nernst response in a given superconductor
to its material-dependent length scales in disagreement
with our observation.

Fig. 1 presents our data on two-dimensional Nb-doped
strontium titanate (STO). The heterostructure consisted
of 1% at. Nb:SrTiO3 (n2D= 8.6×1013cm−2) with a thick-
ness of 4.5 nm sandwiched by cap and buffer undoped
STO layers (see Fig. 1a). Previous studies documented
the normal-state [13, 14] and the superconducting prop-
erties [15] of such δ-doped samples in detail. Using a
standard two-thermometers-one-heater set-up (see Fig.
1b), we measured diagonal (resistivity and thermopower)
as well as off-diagonal (Nernst and Hall effects) transport
coefficients of the sample with the same electrodes (see
the supplement [16] for more details). As seen in pan-
els d-j of the same figure, a Nernst signal emerges in the
vortex state and its peak shifts with magnetic field and
remains close to the midpoint of the resistive transition.

Fig. 2a shows the evolution of the low-field Nernst
coefficient (ν = N/B) across Tc. Its magnitude is ex-
tremely sensitive to magnetic field. The Nernst coeffi-
cient of the normal quasi-particles detected in bulk crys-
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FIG. 1: Nernst effect in two-dimensional Nb-doped strontium titanate: a) Schematic view of the heterostructure. b)
Sketch of the two-thermometers-one-heater set-up used in these measurements. c) Resistivity ρxx as a function of temperature.
The midpoint resistive transition at Tc = 0.341 K shifts to lower temperatures with increasing magnetic field. The inset shows
the correlated evolution of this midpoint and the Nernst peak with temperature and magnetic field. d-j) The Nernst signal N
and ρxx vs. temperature at different magnetic fields, both the Nernst peak and the resistive transition vanish at B = 0.1 T.

tals of doped STO [20] is much smaller and has an op-
posite sign (ν = −0.04 µV/KT at B = 1 T and T = 0.5
K) [3, 20]. It is negligible at B = 0.005 T. As indicated by
a recent study on NbSe2 [21], confinement to two dimen-
sions facilitates the observation of the superconducting
contribution to the Nernst response.

Theoretically, the Nernst signal due to the Gaussian
fluctuations of the superconducting order parameter [22–
24] leads to a simple expression for the off-diagonal com-
ponent of the thermoelectric tensor, αxy:

αFlxy
B

(T ) =
kBe

2

6π~2
ξ2(T ). (1)

Here, ξ(T ) = ξ0/
√
ε is the superconducting coherence

length and ε = (T − Tc)/Tc is the reduced temperature.
Combining our Nernst and resistivity data, we can plot
αxy in Fig. 2b. Its magnitude at twice Tc is compatible
with what is expected by Eq. 1 and the zero-temperature
coherence length extracted from the upper critical field
(ξ0 = 60 nm) [13]. Similar observations were previously
reported for amorphous superconductors [17, 25, 26] and
in cuprates [18, 19]. Because of the long ξ, αxy found
here is larger than those studied previously (See the inset
in Fig. 2b and the supplement [16]).

We now turn our attention to the vortex Nernst sig-
nal below the critical temperature. The Nernst signal in
Nb:STO peaks to ≈ 11µV/K (see Fig. 1h,i and Fig. 4b).
At the temperature and magnetic field of this peak, the
measured resistivity is ≈ 100µΩcm. Therefore, the peak

transverse thermoelectric response is αxy = N/ρ = 11
A/Km. In the traditional approach to the vortex dy-
namics [3, 4, 6], this is set by a balance between the
thermal force (proportional to the entropy of each vor-
tex, Sd) and the Lorentz force proportional to its mag-
netic flux, φ0 = h/2e = 2.07×10−15 Tm2 [1]. This yields
Sd = φ0 × αxy ≈ 2.3× 10−14 J/K. m [16].

Sergeev and co-workers [12], after commenting the in-
adequacies of previous theories [10, 11], (See the supple-
ment for details) proposed the following expression for
vortex transport entropy:

Scored ' −πξ2 ∂

∂T

H2
c

8π
(2)

The right side of Eq.2 is the product of the vortex size
(ξ is the coherence length) and the entropy difference be-
tween the two competing phases. Indeed, the thermody-
namic critical field, Hc, is set by the difference between
the free energies of the normal, Fn and the supercon-

ducting, Fs phases set :
H2

c

8π = Fn−FS [1]. Using the ex-
perimentally known coherence length and critical fields,
Eq.2 yields Sd = 1.2×10−12 J/K. m (see the supplement
for details [16]), fifty times larger than the experimental
value and indicating the absence of a crucial ingredient.

Fig. 3 presents a study of the Nernst effect in an-
other two-dimensional superconductor, namely amor-
phous MoGe, a platform for studying superconductor-
insulator transitions [30]. The Nernst peak evolves con-
comitantly with the resistive transition with increasing
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FIG. 2: Nernst response in the normal state due to su-
perconducting fluctuations: a) The Nernst coefficient as
a function of temperature in two-dimensional Nb:STO across
the critical temperature at B = 5 mT. b) The off-diagonal
component of the thermoelectric tensor, αxy = N

ρ
a0 as a func-

tion of reduced temperature, ε = (T − Tc)/Tc. The dashed
line represents ε−1.3, the solid line what is expected by Eq.
1. The inset compares the magnitude of normal-state αxy (at
T = 1.5Tc) in different superconductors [17–19] as a function
of their upper critical field, Hc2. The dashed line represents
the magnitude expected by Eq. 1 and a coherence length
given by Hc2(0).

magnetic field. The vortex Nernst signal peak is slightly
lower than the peak in Nb: STO. The extracted αxy (≈
14 A/Km) and Sd(≈ 2.8 ×10−14 J/K.m) are almost the
same. In other words, these two superconductors, despite
an almost 20-fold difference in their Tcs (6.2 K vs. 0.34
K) and their Hc2s (7 T vs. 0.1 T) have similar entropy
per vortex.

Fig.4a) shows the Nernst data in a number of super-
conductors. Some are layered, others isotropic. Some are
crystalline, others amorphous. Some are conventional,
others unconventional. Some were studied as thin films,
others as single crystals. In spite of the large difference
in the critical temperature, the Nernst signal in all peaks
to a few µV/K. Figs. 4b-d compares the contours of
N(T,B) in three different superconductors. The field
and the temperature scales differ by two orders of mag-
nitude, but the summit has a comparable magnitude of
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FIG. 3: Nernst effect in amorphous MoGe: a) Evolution
of the resistive superconducting transition in amorphous films
of MoGe with magnetic field. b) Nernst effect N in the same
sample. The color code for magnetic fields is identical to
the one used in the upper panel. The inset schematically
depicts the structure of the sample consisting of alternating
superconducting and insulating layers.

4 -10 µV/K.

This similarity in the magnitude of the vortex Nernst
response below Tc is to be contrasted with the material-
dependent amplitude of the fluctuating Nernst signal
above Tc and the material-dependent amplitude of the
quasi-particle Nernst signal. The latter is known to
spread over six orders of magnitude in different met-
als [3, 8]. Theory gives a satisfactory account of the
amplitude of the quasi-particle or the fluctuating Nernst
signal but, as we saw above, not the vortex Nernst signal.

One defect of the common picture of the vortex Nernst
signal is its neglect of forces other than the thermal force
acting on a vortex as discussed in the supplement [16].
An upper boundary to N is equivalent to a lower bound-
ary to the viscosity-to-entropy density ratio for the vortex
liquid. Such a boundary is a subject of current inter-
est [31, 32] also discussed in the supplement [16].

Table I lists four different crystalline superconductors
and their largest value of the Nernst signal at any field
and temperature, Npeak. They belong each to a differ-
ent family and they are chosen because the resistivity
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FIG. 4: Peak Nernst signal in different superconductors: a) The Nernst signal as a function of temperature in
STO and MoGe (present work) compared with data on an amorphous film of InOx [26], on FeSe0.6Te0.4 [27], on κ-
(ET)2Cu[N(CN)2]Br [28], on La1.92Sr0.08CuO4 [29] and on Bi2Sr2CaCu2O8+δ [6]. For each system, the critical temperature is
indicated together with the magnetic field at which the observed peak was the largest. In all systems, this magnetic field is the
one at which the peak is largest, except in Bi2212 [6], for which the data was restricted to 12 T. The field and temperature
dependence of the Nernst signal are shown as color plots for b) Nb:STO, c) MoGe and d) FeSe0.6Te0.4 [27]. Note the similarity
in the peak amplitude in contrast to the large difference in the field and temperature scales.

TABLE I: The peak Nernst signal in superconductors belong-
ing to four different families: SrTi0.99Nb0.01O3 (Nb:STO),
FeSe0.6Te0.4(FeSeTe) [27], κ-(ET)2Cu[N(CN)2]Br(κ-ET) [28]
and La1.92Sr0.08CuO4(LSCO08) [29]. Also listed are sheet re-
sistance per layer (resistivity divided by the lattice parameter
along the orientation of magnetic field) measured at the tem-
perature and the magnetic field corresponding to N=Npeak

and the deduced entropy per vortex per layer (see the supple-
ment [16] for a discussion of the available Nernst data).

Compound Tc Npeak c ρpeak/c Ssheetd

[K] [µ/K] nm [kΩ] [10−23J/K]

Nb:STO 0.35 11 0.39 2.6 0.89

FeSeTe 14 4 0.58 0.86 0.96

κ-(ET) 11 6.1 2.9 1.31 0.96

LSCO08 29 9.1 1.2 2.12 0.88

of the sample at N = Npeak (dubbed ρpeak) has been
reported, allowing to calculate the vortex entropy per

layer, using the lattice parameter c: Ssheetd = Φ0
Npeak

ρpeak c.

As seen in the table, Ssheetd is similar and of the order of
kBln2 = 0.95 × 10−23J/K. In other words, despite the
dissimilarity in the coherence length and in the penetra-
tion depth, the entropy carried by each vortex per sheet
is of the order of a Boltzmann constant.

Our observation implies that Eq.2 does not give an
accurate account of the mobile entropy of a supercon-
ducting vortex and the problem should be deeply recon-

sidered. At this stage, we can identify two obvious short-
comings with equation. First it assumes that the entropy
density in the vortex core is identical to the entropy den-
sity in the normal phase. This neglects the existence of
the Caroli–de Gennes–Matricon [33] levels in the core.
Second, it takes for granted that all core entropy is mo-
bile and does not distinguish between what is bound to
a mobile flux line and what is not.

To sum up, we find that in four superconductors with
different normal states, pairing symmetries and critical
temperatures, the Nernst transport entropy per vortex
per layer is of the order of kB . We expect this to motivate
experimental studies of the vortex Nernst signal in other
superconductors of interest [34–36].
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