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We study hydrodynamic and ballistic transport regimes through nonlocal resistance measurements
and high-resolution kinetic simulations in a mesoscopic structure on a high-mobility two-dimensional
electron system in a GaAs/AlGaAs heterostructure. We evince the existence of collective transport
phenomena in both regimes and demonstrate that negative nonlocal resistances and current vor-
tices are not exclusive to only the hydrodynamic regime. The combined experiments and simulations
highlight the importance of device design, measurement schemes and one-to-one modeling of exper-
imental devices to demarcate various transport regimes.

Electron transport in metals is often governed by mo-
mentum dissipation from electrons to the lattice e.g. via
impurity or phonon scattering. Such diffusive trans-
port occurs when the momentum-relaxing (MR) electron
mean-free-path `mr (obtained from electron mobility) is
the shortest length scale in the system. However, in ultr-
aclean two-dimensional electron systems (2DESs), a de-
parture from diffusive transport occurs due to a long `mr,
giving rise to either ballistic or hydrodynamic transport
[1]. In the ballistic regime scattering mainly arises at the
device boundaries, specularly or diffusively, and is delin-
eated by the device scale W [2, 3]. Yet inelastic electron-
electron (e-e) interactions transfer momentum predomi-
nantly among the electrons instead of to the lattice, con-
serving momentum within the electron system. When
such momentum-conserving (MC) scattering - character-
ized by MC scattering mean-free-path `mc - dominates,
electrons can move collectively like a fluid and exhibit
several effects associated with fluid dynamics [1, 4–13].
The observation of this hydrodynamic regime in elec-
tronic systems has attracted significant interest [14–29].

The hydrodynamic regime shows a nonlocal current-
voltage relation in devices, which can result in a negative
nonlocal resistance (Rnl) [6–10]. Such sign reversal has
been exploited in recent experiments to detect the onset
of the hydrodynamic regime [19–23]. However, the ballis-
tic regime also shows a nonlocal current-voltage relation,
and can likewise produce negative Rnl [10, 11]. In fact,
the ballistic regime also supports striking current vortices
and collective motion of particles usually associated with
fluid depictions [30]. In this work, we reveal notable cur-
rent vortices in both hydrodynamic and ballistic regimes,
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uniquely supported by evidence from elaborate measure-
ments of Rnl. The presence of vortices in both hydro-
dynamic and ballistic regimes can be traced to electron
momentum conservation in both regimes [10, 30].

We present strides in experimental device design, mea-
surement schemes, and concomitant results, as well as in
one-to-one modeling of the experimental device, pivotal
in demarcating the transport regimes. We demonstrate
measurements of Rnl in a large-scale (∼ 30× 24 µm) ul-
traclean (`mr ' 65 µm at 4.2 K) device, which by its
scale offers exceptional sensitivity to MC scattering, and
hosts 10 point contacts (PCs) to probe voltages at var-
ious distances ∆x between the current injection point
and voltage probes [Figs. 1(a)-1(b)]. The measurements
at various ∆x are critical to check against the predictions
of ballistic or hydrodynamic models. The exceptionally
long `mr, due to optimized GaAs/AlGaAs MBE growth,
favors the appearance of non-diffusive transport regimes.
We interpret the experimental results using realistic high-
resolution simulations of quasiparticle transport at the
kinetic level, involving the actual experimental geometry
in the precise contact configuration, and taking into ac-
count both MR and MC scattering. The simulations with
`mr and `mc as inputs, determine that the device transi-
tions from a predominantly ballistic regime at T = 4.2 K
to a hydrodynamic regime at T ≈ 12− 19 K [Fig. 1(c)].

Mesoscopic geometries were patterned on a
GaAs/AlGaAs heterostructure containing a 2DES
with mobility µ exceeding 670 m2/(Vs) at 4.2 K.
The areal electron density is NS ≈ 3.4×1015 m−2,
corresponding to a Fermi energy EF ≈ 11.2 meV
and `mr = 64.5 µm at 4.2 K (Supplemental S1 [31]).
To measure Rnl, we fabricated an in-line mesoscopic
geometry [Fig. 1(a)] containing 10 PCs (a − j) located
in barriers which are on both sides of a multiterminal
Hall mesa, with sides separated by W ≈ 24 µm. Each
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FIG. 1. (a) Optical micrograph of the geometry showing dimensions, PCs a − j (indicated by white dots, with paths to PCs
in distinct colors), the computational domain (yellow outline) and current and voltage PCs for example measurements in the
G1(i) and G2(i) configurations. Unused PCs are left floating. (b) Schematics of subconfigurations G1(i − iv) and G2(i − iv)
depending on current injection PC and voltage measurement PC. (c) Simulated current streamline and voltage contour plots
for G1(i) and G2(i) at T = 4.2 K and 13 K. The streamline and source arrows depict the direction of conventional current.

PC can act as either a current injector α (injecting
electrons) or a voltage detector β (detecting a nonlocal
voltage). A measurement is defined by a pair consisting
of an injector PC α and a detector PC β in the same
barrier, and we label the center-to-center separation
between PCs in such pair as Lαβ , where Lαβ ranges
from 1.3 µm to 20.5 µm. Calling Vnl the nonlocal
voltage measured at β vs a faraway counterprobe if
current I is injected at α and drained at another faraway
counterprobe [Fig. 1(a)], the 4-probe nonlocal resistance
is expressed as Rnl = Vnl/I and Rnl takes the sign of Vnl.
Measurements were performed in the linear response
regime i.e. for small excitation energies (such that the
system is everywhere close to equilibrium, with electrons
close to EF ) over 4.2 K ≤ T ≤ 40 K, using low-frequency
(∼ 44 Hz) AC lock-in techniques without DC offsets.
We use I ∼ 200 nA, which is large enough for formation
of vortices (Supplemental S4 [31]) yet small enough
to avoid electron heating. The conducting PC width
w ≈ 0.6µm and the Fermi wavelength, λF = 43 nm
show that w/(λF /2) ≈ 28 spin-degenerate transverse
modes contribute to transport, yielding a PC resistance
≈ (h/2e2)/28 = 461 Ω (Supplemental S1 [31]). The large
number of modes implies that PCs are very much open
and act as classical PCs. The barriers and boundaries
were defined using wet etching, which results in pre-
dominantly specular boundary scattering [36, 37]. We
exploit the flexibility provided by the geometry, allowing
testing of different configurations for current injector
and drain, and for many ∆x, in the same device. We
use two current configurations: G1 where after injection
at α, I is drained at the side of the device, and G2 where
I is drained at a PC at the opposite side of the device

[Figs. 1(a)-1(b)]. The sensitivity to MC scattering turns
out much higher in G1 (vicinity geometry [20]) than in
G2 (Supplemental S7 [31]).

Transport in the device is modeled via the Boltzmann
equation [10, 31]
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where f(x,p, t) is the electron distribution in the spa-
tial coordinates x ≡ (x, y), momentum coordinates p ≡
(px, py), and time t. While long-range electric fields are
not explicitly present in Eq. (1), they are included at
linear order as the gradient of the electrochemical po-
tential [10]. The left side (with vF the Fermi velocity
and m the effective mass) describes free advection, and
the right side thermalization due to MR and MC scat-
tering in a relaxation time approximation [38] with fmr

0

and fmc
0 the local stationary and drifting Fermi-Dirac

distributions (details of the model in Supplemental S2
[31] and [10]). The model inputs are `mc (a free pa-
rameter) and `mr (fixed by µ). We consider dynamics
at the Fermi surface without thermal smearing so that
p = mvF p̂, and solve for transport in the zero-frequency
limit (∂/∂t→ 0); vF then factors out, leaving the circu-
lar Fermi contour as the only relevant detail. We solve
Eq. (1) in the precise experimental geometry using bolt
[39], a high-resolution solver for kinetic theories. The
overall prefactor of the numerical solutions is set by cal-
ibrating against the measurements in G1(ii) [Fig. 1(b)]
for each T (Supplemental S3 [31]).

The experimental Rnl vs T for G1 and G2 are de-
picted in Figs. 2(a) and 2(b) respectively, for the specific
Lαβ used in measurements (Fig. 1(a) exemplifies Lac).
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FIG. 2. (a,b) Experimental nonlocal resistance Rnl vs T for
each Lαβ for (a) G1 and (b) G2. (c,d) Rnl vs ∆x for each
T for (c) G1 and (d) G2. The dotted lines indicate Rnl = 0,
with negative (positive) regions of Rnl shaded in blue (red).

Two inferences appear: the negative Rnl attest to a de-
parture from diffusive transport, and a striking contrast
exists in T dependences between G1 and G2. For G1,
Rnl shows a non-monotonic dependence on T , initially
decreasing as T increases, crossing over to negative val-
ues in a particular range of T for given Lαβ , then in-
creasing to positive values. For G2, Rnl increases from
negative values at low T to positive values at higher T .
The difference in T dependence between G1 and G2 in-
dicates that the current injector-drain configuration sig-
nificantly affects transport. Figure 2(a) can be directly
compared with similar results in graphene [20, 22] and
other GaAs/AlGaAs experiments [19]. Figures 2(c) and
2(d) depict Rnl vs ∆x parametrized in T for G1 and G2
respectively, tracing a crossover from negative to positive
values vs ∆x.

In Fig. 2(a) for T . 10 K, G1 shows negative Rnl

for small ∆x . 2.6µm (Lih, Lig), crossing over to pos-
itive Rnl for ∆x & 5.1µm (Lbd, Lji, ...). As T is in-

creased, Rnl vs T develops a minimum for all ∆x, and
the Rnl at this minimum crosses over to negative val-
ues for ∆x . 12.8 µm. These observations [confirmed
in Fig. 2(c)] are a consequence of the interplay between
`mc(T ), `mr(T ) and geometry. Considering only `mr(T ),
with `mr(4.2K) = 64.5 µm � W = 24 µm at T = 4.2
K the system is predominantly ballistic. By finding the
values of `mc (used as a model input parameter, given
`mr) for which the experimental and modeled Rnl match,
we have a means of bracketing values for `mc(T ). The
procedure is illustrated in Fig. 3. In Fig. 3(a) we focus
on T = 4.2 K, lying in the region T . 10 K showing
a crossover vs ∆x from negative Rnl at small ∆x (1.3
µm and 2.6 µm) to positive further away [see Figs. 2(a)
and 2(c)]. The inset in Fig. 3(a, panel 3) shows that
the limiting billiard model, common in ballistic trans-
port and using (`mc → ∞, `mr → ∞), does not capture
the crossover vs ∆x because it results in Rnl > 0 for all
∆x (inset, black trace); yet positive Rnl is not universal
in the billiard model and can be heavily influenced by
geometry (Supplemental S6 [31]). Introducing finite MR
scattering via the experimental `mr = 64.5 µm (T = 4.2
K) and zero MC scattering with `mc → ∞, the modeled
Rnl are lower compared to the billiard model but still do
not reach Rnl < 0 at small ∆x (inset, blue trace). As
shown in Fig. 3(a), only with finite MC scattering us-
ing a range `mc ' 60 − 300 µm (� W = 24 µm), does
the model yield a crossover from negative to positive Rnl

with increasing ∆x. The inset in Fig. 3(b, panel 2) plots
this range at 4.2 K as compatible with data and model.

A theoretical prediction for `mc is found in a com-
monly used theoretical expression for quantum lifetime
by Giuliani & Quinn (GQ) [40] (Eq. S1 in Supplemental
S5 [31]), also plotted in the inset. The inset demon-
strates that `mc ' 60 − 300 µm exceeds values from
GQ which at 4.2 K yields `mc ≈ 15 µm. In fact, us-
ing `mc = 15 µm in the model yields Rnl < 0 throughout
the device [Fig. 3(a), green curve], contrary to experi-
mental observations. Recent results in fact suggest that
longer `mc can result from dielectric screening [27]. In
short, considering `mc, for T . 10 K neither the billiard
model (`mc →∞) nor GQ (too short `mc) reproduce the
experiments, and intermediate `mc is required. Further,
the presence of numerous current vortices of various sizes
in the predominantly ballistic regime [Fig. 1(c) at 4.2 K],
reveals that dominance of MC scattering is not obligatory
for the formation of vortices.

For 10 K . T . 22.5 K in G1, Rnl vs T develops a
minimum, which becomes shallower with increasing ∆x,
and Rnl crosses over to negative values for ∆x . 12.8 µm
[Fig. 2(a)]. Modeling using `mc ' 1.5− 5 µm accommo-
dates all the experimental data at T = 13 K [Fig. 3(b)].
Since `mc � W and `mc � `mr while `mr = 30.5µm
& W is sufficiently long, the system is in the hydrody-
namic regime. At T = 13 K, GQ yields `mc ' 2.5 µm
[40], lying in the model’s range of `mc ' 1.5−5 µm. This
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FIG. 3. Experimental Rnl (black dots) and modeled Rnl (lines) for G1(i− iv), plotted vs location x along the barrier into which
the injection PC (blue vertical bars) is placed, at (a) T = 4.2 K where `mr = 64.5 µm and (b) T = 13 K where `mr = 30.5 µm.
The modeled Rnl (lines) is shown parametrized in `mc. Schematics of subconfigurations are also depicted. The grey vertical bars
represent locations of detector PCs. Experimental Rnl (black dots) for G1(ii) are chosen for reference calibration (Supplemental
S3 [31]) given the clear crossover in Rnl in G1(ii). Inset in (a, panel 3) shows Rnl for G1(iii) for (`mc →∞, `mr →∞) and for
(`mc → ∞, `mr = 64.5 µm). Inset in (b, panel 2) shows the extracted `mc vs T (black bars), along with theoretical estimates
(blue dotted line) from GQ [40] (Eq. S1 in Supplemental S5 [31]).

suggests that using conditions where `mc &W (as at 4.2
K) leads to a more discriminating test of microscopic the-
ories of `mc. As expected in the hydrodynamic regime,
Fig. 1(c) (13 K) exhibits current vortices.

Yet the current vortices in the hydrodynamic regime
in Fig. 1(c) (13 K) exhibit a distinct pattern compared
to the ballistic vortices at 4.2 K. In the hydrodynamic
regime only a single vortex [dashed box in Fig. 1(c)] in-
habits the main chamber, and this result is obtainable
from just the Navier-Stokes fluid equations. In contrast,
the ballistic profile [top panels in Fig. 1(c)] shows mul-
tiple vortices, which cannot be accessed from fluid equa-
tions and require solving a Boltzmann kinetic equation.
Notably, while the fluid equations cannot access the bal-
listic limit, the Boltzmann equation can access the fluid
solutions in the limit `mc �W .

As T is increased further in G1 to T & 19 K, Fig. 2(a)
shows an upward trend in Rnl vs T towards Rnl > 0 for
all ∆x. The crossover to Rnl > 0 occurs at higher T for
smaller ∆x (Rnl at ∆x = 1.3 µm is still negative at 40
K but is estimated to go positive around 45 K). This is
corroborated by Fig. 2(c) where the region of Rnl < 0
diminishes to smaller ∆x with increasing T . This behav-
ior heralds a breakdown of hydrodynamic transport and
a transition from hydrodynamic to diffusive dynamics as

MR scattering increasingly affects transport. In G1 the
hydrodynamic regime exists at intermediate T ≈ 12− 19
K, estimated from Fig. 2(c) by tracing the crossover from
negative to positive Rnl vs ∆x. Supplemental S8 [31]
shows the experimental and modeled Rnl at 28 K, and
the change in vortex pattern with changing `mc.

Figures 2(b) and 2(d) reveal that in the G2 configu-
ration Rnl < 0 occurs over a wide range of T , rendering
it inefficient in differentiating between ballistic and hy-
drodynamic regimes. The simulations also show that G2
is insensitive to MC scattering (Supplemental S7 [31]).
Both properties disallow using G2 to determine `mc, high-
lighting the importance of choosing appropriate contact
configurations for discriminating transport regimes.

In conclusion, non-diffusive transport, either predomi-
nantly ballistic or hydrodynamic, is realized over a wide
temperature range in a large-scale GaAs/AlGaAs geom-
etry. The appearance of both predominantly ballistic or
hydrodynamic regimes at such a large scale, despite op-
posite required limits of the strength of MC scattering,
is striking. Equally remarkable are their shared char-
acteristics of negative nonlocal resistances and current
vortices. The nonlocal resistance in both regimes can
be tuned by device and contact geometry, used here to
disentangle the regimes and to obtain a measure of the
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MC scattering length. While the importance of geome-
try in the ballistic regime is well-known, we additionally
find that the ballistic regime can also exhibit collective
effects, such as current vortices, even in the absence of
dominant electron-electron interactions in a large-scale
ultraclean device.
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