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Two-dimensional (2D) Dirac fermions are a central paradigm of modern condensed matter physics,
describing low-energy excitations in graphene, in certain classes of superconductors, and on surfaces
of 3D topological insulators. At zero energy E = 0, Dirac fermions with mass m are band insulators,
with the Chern number jumping by unity at m = 0. This observation lead Ludwig et al. [Phys. Rev.
B 50, 7526 (1994)] to conjecture that the transition in 2D disordered Dirac fermions (DDF) and
the integer quantum Hall transition (IQHT) are controlled by the same fixed point and possess the
same universal critical properties. Given the far-reaching implications for the emerging field of the
quantum anomalous Hall effect, modern condensed matter physics and our general understanding
of disordered critical points, it is surprising that this conjecture has never been tested numerically.
Here, we report the results of extensive numerics on the phase diagram and criticality of 2D-DDF
in the unitary class. We find a critical line at m = 0, with energy-dependent localization length
exponent. At large energies, our results for the DDF are consistent with state-of-the-art numerical
results νIQH = 2.56–2.62 from models of the IQHT. At E = 0 however, we obtain ν0 = 2.30–2.36
incompatible with νIQH. This result challenges conjectured relations between different models of the
IQHT, and several interpretations are discussed.

Introduction. The integer quantum Hall effect appears
when a two-dimensional (2D) electron gas is placed in
a strong perpendicular magnetic field. Without disor-
der, the electron eigenstates form Landau levels, and each
filled level contributes unity to the total Chern number
C. Disorder is essential for experimental observation of
the (dimensionless) quantized Hall conductivity σxy = C;
it broadens the Landau levels into bands and localizes
eigenstates on a scale ξ(E) that diverges as a power
law at a critical energy Ec [1], ξ(E) ∼ |E − Ec|−νIQH .
For Fermi energies E 6= Ec and system sizes L� ξ(E)
the Hall conductivity is quantized. The integer quan-
tum Hall transition (IQHT) at E = Ec is the most
studied Anderson transition [2] because of its concep-
tual simplicity, low dimensionality, and experimental rel-
evance. However, critical properties at the IQHT are
notoriously difficult to compute analytically; they are
mostly known from numerical studies which employed
the Chalker-Coddington (CC) network model [3–13], mi-
croscopic continuous [14, 15], lattice [10, 14–17], and
Floquet Hamiltonians [18]. In recent works, the criti-
cal properties agree between models, indicating univer-
sality of the IQHT. They include the localization length
exponent νIQH = 2.56–2.62 and the leading irrelevant ex-
ponent y ' 0.4 (with large error bars). At criticality,
y describes the approach of the dimensionless quasi-1D
Lyapunov exponent Γ to its limiting value at infinite sys-
tem size ΓIQH

0 = 0.77–0.82 [5–7, 9, 11–13, 16]. A similar
exponent y was found for the average conductance g of
a square sample with limiting value gIQH = 0.58–0.62
[19, 20]. For ongoing analytical work on the IQHT, see
[21–23] and the discussion below. The IQHT has also
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FIG. 1. Schematic phase diagram for 2D Dirac fermions. (a)
Clean case: A metal intervenes between two band insulators
with different Chern numbers C at |m| > |E|. With disor-
der in the unitary class, the metal localizes except on the
critical line m = 0 separating topologically distinct Ander-
son insulators. (b) The critical exponent νE is found to vary
significantly with energy. The two fixed points scenario (c)
explains this as a result of a crossover, while the marginal
scaling scenario (d) would be compatible with a smooth evo-
lution of effective critical exponents.

been discussed recently in relation to exotic topological
superconductor surface states [24].

A longstanding conjecture by Ludwig et al. [25] states
that the IQHT fixed point also controls the criticality of
2D disordered Dirac fermions (DDF). The clean Dirac
Hamiltonian is

H0 = ~v (−iσx∂x − iσy∂y) +mσz, (1)

with Pauli matrices σµ, mass m, and velocity v. The
spectrum of H0 has a gap 2|m| symmetric around E = 0.
For Fermi energies E within the gap, the system is a
band insulator with half-integer quantized σxy = C(m) =
− 1

2 sgn(m) [25], see Fig. 1(a). If the Dirac fermion is
regularized on a lattice as in the Haldane model [26] or
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Eq. (5) below, H0 only describes the low-energy excita-
tions near a certain point in the Brillouin zone. Bloch
states elsewhere contribute another 1/2 to C, such that
|σxy| jumps between zero and one as m changes sign.

With m taking the role of energy, the superficial simi-
larity of this transition to the IQHT motivated Ludwig et
al. [25] to consider the effects of disorder in the unitary
symmetry class [27, 28],

H = H0 +
∑

µ=0,x,y,z

Uµ(x, y)σµ. (2)

The random scalar (U0) and vector (Ux,y) potentials,
and the random part of the mass (Uz) are taken to
be independent Gaussian fields with the correlators
Uµ(r)Uν(r′) = δµνKµ(|r′ − r|) and zero mean. Time re-
versal changes the sign of m+Uz, connecting two equally
likely members of the statistical ensembles with opposite
values of m, and the transition in the disordered model
happens at m = 0. Due to the absence of an extended 2D
metal phase in the unitary class, all eigenstates of H with
|m| > 0 are expected to be localized with the localiza-
tion length ξ(m) ∼ |m|−νE , with a possibly E-dependent
critical exponent νE .

Although model (2) is not solvable analytically, the
conjecture [25] νE=0 = νIQH was based on a semiclassi-
cal argument that leads to the CC-model. Another argu-
ment [29] considers the clean CC-model and finds a Dirac
spectrum, but the inclusion of disorder is uncontrolled.
In the supplemental material (SM) [30], we review these
arguments and identify their possible flaws.

Despite the importance of the 2D Dirac model in mod-
ern physics, the conjectured emergence of IQHT critical-
ity in DDF was never checked numerically. Here, we
address this issue with extensive simulations employing
different microscopic models and scaling observables. We
start with the continuum model (2) and use the transfer
matrix (TM) approach in quasi-1D (q1D) geometry to
find the critical behavior near the line m = 0 in the m-E
plane, see Fig. 1(b). At large E our results are consis-
tent with νE = νIQH, but as E is lowered, the critical
exponent decreases towards νE=0 = 2.33(3) still close to,
but strikingly incompatible with νIQH. We corroborate
our E = 0 results in a lattice model of DDF, employing
an alternative 2D scaling observable [10].

In the experimental literature, a quantized non-zero
σxy in the absence of an external magnetic field is known
as the quantum anomalous Hall effect [31–33]. Recent
efforts [34, 35] have been directed to the critical scaling
at the topological phase transition in question, however,
the error bars on the resulting exponents are still large.

Continuum model and disorder-induced length scale.
We start with Hamiltonian (2) at E = 0 and smooth

disorder, Kµ(r) = W 2e−r
2/2a2/2π. We use the disorder

correlation length a and ~v/a as units of length and en-
ergy so that the dimensionless disorder strengthW , taken

to be the same for all four disorder fields, is the bare en-
ergy scale in the model. The mean free path lW equals
the quasiparticle decay time, lW ≡ −1/Im Σ↑↑(0, 0) de-
fined in terms of the disorder-averaged Green function
G(k, ω) = [ω − H0(k) − Σ(k, ω)]−1. For weak dis-
order W � 1, a perturbative renormalization group
(RG) [25, 36] gives, for m = 0, lW ∝ ec/W

2

, with
c = O(1). To ensure that our system sizes L � lW ,
we work with strong disorder W ≥ 1.5 where a nu-
merically exact method [37] yields lW=1.5 = 1.54. We
also observe that for klW > 1, the peaks in the spectral
function A(k, ω) = − 1

π tr ImG(k, ω) occur at frequencies
ω ' ±~vk, i.e. the velocity v is almost un-renormalized.
We conclude that for W = 1.5, system sizes L & O(10)
are large enough to exhibit disorder-dominated physics.

Lyapunov exponent (LE). A common method to ana-
lyze critical behavior in disordered systems employs the
self-averaging LEs γi in a quasi-1D geometry with length
Lx →∞ [38]. The smallest γi > 0 (the inverse of the 1D
localization length) gives the scaling variable Γ = γLy,
which increases (decreases) with width Ly in a localized
(extended) phase and is scale-invariant at a critical point.
Following Ref. [39], we use finite Lx = O(105) and find
Γ as the average over hundreds of disorder realizations,
see SM for details.

The eigenvalue problem for the DDF (2) can be rewrit-
ten as ∂xψ(x, ky) = f(ψ(x, k′y)). The right hand side
contains scattering between transversal wavevectors ky
but is local in x, which allows us to express the TM in
exponential form. We impose periodic boundary condi-
tions (BC) in the y direction. We discretize the x di-
rection and stabilize the TM multiplication by repeated
QR-decompositions [1] (to obtain Γ) or via a scattering
matrix [40] (for the conductance of moderately sized sys-
tems). Both methods are numerically exact and faith-
fully treat model (2) without band bending or node dou-
bling. The only approximations are related to the cutoff
|ky| ≤ kmax and the x-discretization. The associated
length scales (taken equal) were chosen much smaller
than a, and results are converged with respect to these
parameters.

Results for the dimensionless LE Γ at E = 0, W = 1.5,
various masses m and system widths Ly are presented in
Fig. 2. The solid lines are fits to the scaling function

Γ(m,Ly) = Γ0 + α01L
−y
y + α20m

2L2/ν
y , (3)

which is the lowest-order polynomial ansatz allowed by
symmetry, including an irrelevant contribution. The fit
gives the following critical properties:

νE=0 = 2.32(1), y = 0.51(3), Γ0 = 0.84(1), (4)

the number in parentheses denotes one standard devi-
ation. In the SM, we give a detailed account for the
fitting procedure and show its stability with respect to
higher order terms in Eq. (3) and a removal of data points
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FIG. 2. Top: LEs Γ for E = 0 and W = 1.5 as functions
of m2. The relative error is ≤ 0.2%, error bars are smaller
than the dots. Solid lines denote the best fit [Eq. (3)] with
fit parameters as given in the panels. Bottom: Closeup at
criticality (m = 0) with extrapolation to infinite system size
determining Γ0 (cross).

for large m and small Ly. There, we also present data
for an increased disorder strength W = 2.0, which yields
νE=0 = 2.31(2), y = 0.51(3) and Γ0 = 0.84(1) compatible
with anticipated disorder-independent critical properties.

Lattice model and alternative scaling observable. We
now confirm the value of νE=0 using a square-lattice reg-
ularization of the DDF allowing access to an alternative
scaling observable introduced by Fulga et al. [10]. In mo-
mentum space, the clean model reads [41]

HL
0 = σx sin kx + σy sin ky + σz(m− 2 + cos kx + cos ky),

(5)
where lattice constant and energy scale have been set
to unity. For |k| � 1, this model reduces to Eq. (1),
with a topological transition at critical m = mc = 0
where C changes by 1, but band bending is important
for k,E & 1. We add on-site disorder potentials, V =∑

ri,µ
Uµ(ri)σµ with Uµ(ri) uniformly drawn from the

interval [−w/2, w/2] independently for each lattice site ri
and µ = 0, x, y, z. Transport calculations use the kwant
package [42] and employ two identical leads attached at
the left and right boundaries of the system, represented
by decoupled 1D chains extending in the x-direction:

HLead(kx, ky) = σx sin kx + σz (1 + cos kx) . (6)

The lattice model (5) has no symmetry that ensures
mc = 0 in the presence of disorder. However, the Dirac
node energy is not renormalized away from E = 0. The
reason is that the eigenenergies come in pairs ±E. This
symmetry carries over to the disorder averaged density of
states as long as the average potential disorder U0 = 0.

To determine the exponent νE=0, we consider the re-
flection matrix r(φ) of the left lead as a function of the
phase φ of twisted BC in the y direction. For a given
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FIG. 3. Scaling plot of the variable Λ for the model (5) at
E = 0 and disorder strength w = 2.5. Dots represent averages
over at least 104 disorder realizations, and the solid curves are
fits described in the SM.

disorder realization, the mc occurs when there exists a
φ such that r(φ) has a zero eigenvalue and det r(φ) = 0.
Fulga et al. [10] showed that a scaling observable Λ can
be obtained by working with generalized twisted BC
ψx,y=L−1 = z ψx,y=0 for all x = 0, 1, ..., L− 1, and z ∈ C.
Now, det r(z) has zeros z0 even for m 6= mc but with
|z0| 6= 1. For the z0 closest to the unit circle, Λ = log|z0|
measures the distance to criticality Λ = 0. For the CC-
model, scaling of Λ with system size L was demonstrated
in Ref. [10], reporting ν = 2.56(3) compatible with re-
sults from the TM method.

We computed Λ for the lattice DDF HL
0 + V for m

around 0, w = 2.5 and system sizes between L = 60 and
200, see Fig. 3 for the results and the SM for details of
the fit. We find νE=0 = 2.33(3) in agreement with the re-
sult for the continuum model. Notably, the observable Λ
shows no discernible corrections to scaling, which allows
us to omit the irrelevant terms in the scaling function for
Λ. Repeating the analysis for w = 2.25 and 2.75 (not
shown) yields compatible ν within the given error bars.

Results for finite energy (E > 0). We now consider the
continuum model (2) with smooth disorder at finite en-
ergy E > 0 (E < 0 is related by the statistical E → −E
symmetry). In the SM, we present scaling results for the
LE Γ for E = 0.3, 0.5, 0.7 at disorder strength W = 2.
As in the E = 0 case we find localizing behavior for any
m 6= 0. The exponents νE , see Fig. 1(b), increase mono-
tonically with E towards νE=0.7 = 2.53(2), significantly
different from νE=0. Other critical properties (Γ0 and y)
do not seem to vary significantly with E.

To further probe the critical line m = 0, we compute
the critical Landauer conductance g of L×L systems with
periodic BC in the y direction, and metallic leads mod-
eled as highly doped Dirac nodes [43]. The distribution of
g and its moments are expected to be scale-invariant and
universal [2, 4], for E = 0 it is shown in the SM. In Fig. 4
we present the average conductance g. We observe that
for E . 0.3, g ' 0.5 is almost independent of the disorder
strength and E, which we interpret as evidence of prox-
imity to an underlying fixed point. With increasing L,
g slightly increases, consistent with decreasing Γ(m = 0)
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FIG. 4. Critical Landauer conductance g of square samples at
m = 0, disorder strengths W = 1.5 and 2.5, size L = 100, 200
and periodic BC in transversal direction averaged over at least
104 disorder realizations.

in Fig. 2 (bottom).
For 0.3 . E . 1, g begins to depend on W , and varies

with E by ∼ 50% for W = 1.5 but only by ∼ 10% for
W = 2.5. For W = 1.5 and E > 0.6, g slightly decreases
when L grows form 100 to 200. We interpret this as a
remnant of the crossover from the diffusive to the criti-
cal behavior. It is consistent that LEs obtained in this
regime (not shown) cease to obey critical scaling.

Discussion. In summary, our numerical results for
DDF are consistent with localized behavior anywhere in
the m-E plane except on a critical line m = 0, see Fig. 1.
At m = 0, both the dimensionless LE extrapolated to
infinite system size Γ0 = 0.82–0.85 and the irrelevant ex-
ponent y do not vary significantly with energy or disorder
strength below E ' 1, while the average conductance g
of fixed-size square samples at stronger disorder varies at
most by ∼ 10%. In contrast, the localization length ex-
ponent νE significantly depends on energy, see Fig. 1(b).
While νE=0.7 = 2.53(2) is more or less consistent with
the established value for the IQHT νIQH = 2.56–2.62,
the value νE significantly decreases with energy down to

νE=0 = 2.30–2.36, (7)

where we took a union over error bars for the two models
and two scaling methods we used for E = 0.

Let us now put our findings in the context of existing
arguments and first discuss the case of large E and low
W characterized by a large Drude conductivity σD

xx � 1.
In the SM, we numerically confirm that this regime is
achievable in the DDF, albeit not for the parameters used
for the scaling analysis above. Large σD

xx controls the
derivation of an effective field theory for the DDF with
short-range disorder [44] as it justifies the required sad-
dle point approximation. The resulting non-linear sigma
model with θ-term can also be derived for other models
of the IQHT: the Schrödinger equation with short-range
disorder and strong magnetic field [45, 46], and the CC-
model [47, 48]. These relations rationalize our finding
of IQHT-like criticality in the DDF at E = 0.7. Note,
however, that the CC-model lacks the large parameter
analogous to σD

xx, and the derivation of the sigma model

for it is uncontrolled, as well as for the DDF at E ' 0,
where σxx < 1.

We now discuss three possible scenarios addressing the
E dependence of νE [see Fig. 1(b)].

(a) Insufficient system size. In the history of IQHT-
numerics, refined fitting functions and the ability to
study larger systems shifted the value of ν considerably
over time. We also cannot exclude that our results for
νE<0.7 are not the true asymptotic values, and further in-
crease in Ly would bring them closer to νIQH. However,
our system sizes, quality of numerical data, and its anal-
ysis are comparable to recent work on the IQHT. Also,
we do not see a tendency for a drift in νE if the mini-
mal Ly involved in the fit is increased from 40 to 68, see
SM. Finally, we corroborated our E = 0 result (7) at two
disorder strengths and with an alternative scaling observ-
able for the DDF on a lattice. Our finding for νE=0 is also
supported by numerical results from a massless DDF in a
magnetic field [49]. At strong enough potential disorder,
only the critical state deriving from the Landau level at
E = 0 persists, separating localized states at E ≶ 0. The
scaling of dσxy/dE|E=0 and the width of the conductance
peak around E = 0 with system size gave ν ≈ 2.3, but
no error bars were provided.

(b) Two fixed points. In a more intriguing scenario
our results could be consistent with the existence of two
different fixed points. One of them is the conventional
IQHT fixed point that controls the critical behavior at
E > 0, while the other fixed point controls the system at
m = 0, E = 0, see the dot in Fig. 1(c). We conjecture
that this fixed point is multicritical, where both m and
E are relevant, with the RG eigenvalues ym = 1/νE=0

and yE . The RG flow near this point would resemble
that near the tricritical point in the Ising model with
vacancies [50]. In this scenario the critical behavior at
any E > 0 should be the same, and coincide with that
for the IQHT. Our observation of intermediate values
νE=0.3,0.5 may stem from the small (or even zero, if E
is marginally relevant) value of the crossover exponent
yE/ym at the multicritical point, resulting in the cusp-
like shape of the crossover line in Fig. 1(c) which might
cause smearing of νE when extracted over a too large
range of m. However, concerns about this scenario arise
from the absence of any kinks in the Γ vs m2 data for E >
0 (see SM) as well as the apparent energy independence
of Γ0.

(c) Marginal scaling. In a recent development, Zirn-
bauer [23] proposed a solvable conformal field theory for
the IQHT, featuring a fixed point with only marginal per-
turbations, implying ν = ∞, y = 0. In this case, higher
order terms in the β-functions for relevant and irrelevant
scaling fields (the deviations δσxx and δσxy of the con-
ductivities from their fixed-point values) could lead to an
effective critical exponent νeff [51] dependent on the bare
value of δσxx. For a slow RG flow of δσxx, νeff could ap-
pear scale-independent but vary with the parameters of
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the model such as energy, see Fig. 1(d). Ref. [52] reports
further study of this scenario in the numerically more
convenient framework of the CC-model.

Outlook. We hope our findings will prompt a care-
ful re-examination of criticality at the IQHT and other
Anderson transitions. Future work on the critical DDF
should address multifractal properties of wavefunctions
and compare them to established results for the IQHT
[2]. Moreover, working with N = 3, 5, 7... flavors of DDF,
the assumption σD

xx � 1 could be justified even for E = 0
and it would be interesting to compute νE=0 in this case.
Further, extension of our methods to DDF in the symme-
try classes of the spin and thermal quantum Hall effects
is worthwhile.
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