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Abstract

Charge transport in doped quantum paralectrics (QPs) presents a number of puzzles, including

a pronounced T 2 regime in the resistivity. We analyze charge transport in a QP within a model

of electrons coupled to a soft transverse optical (TO) mode via a two-phonon mechanism. For T

above the soft-mode frequency but below some characteristic scale (E0), the resistivity scales with

the occupation number of phonons squared, i.e., as T 2. The T 2 scattering rate does not depend

on the carrier number density and is not affected by a crossover between degenerate and non-

degenerate regimes, in agreement with the experiment. Temperatures higher than E0 correspond

to a non-quasiparticle regime, which we analyze by mapping the Dyson equation onto a problem

of supersymmetric quantum mechanics. The combination of scattering by two TO phonons and

by a longitudinal optical mode explains the data quite well.
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Quantum paraelectrics (QPs) are materials close to a ferroelectric transition but never

quite making it because of zero-point motion which disrupts symmetry breaking.1–4 This

group includes several perovskites, e.g., SrTiO3 (STO), KTaO3 (KTO), and EuTiO3 (ETO),

and a number of rock salts, e.g., PbTe. Electron transport in doped QPs is very much

different from that in doped semiconductors. To begin with, a very large static dielectric

constant (∼ 25, 000 in STO) translates into a micron-long Bohr radius. Consequently,

conduction in QPs sets in at very low doping, e.g., at few times 1015 cm−3 carriers in STO,5

and is prominently metallic above 1017 cm−3. In the metallic regime, the resistivity increases

by several orders of magnitude from the helium to room temperatures, exceeding the Mott-

Ioffe-Regel (MIR) limit around 100 K.6 A very intriguing observation is a prominent T 2

scaling of the resistivity observed in STO,7–9 KTO,10 and ETO.11 Normally, a T 2 resistivity

is associated with the Fermi-liquid (FL) behavior. However, a T 2 resistivity in QPs is

observed already at very low doping, when umklapp scattering is forbidden and only the

lowest conduction band is occupied,7 and straddles a number of relevant energy scales, such

as the plasma frequency and the Fermi energy (EF ). In addition, the T 2 scattering rate

depends only weakly on the electron number density, n.7,8 All of the above contradicts the

interpretation of the T 2 behavior in terms of the FL theory.3,8,12,13

In this Letter, we discuss the model of electrons interacting with a soft transverse optical

(TO) mode, which is a defining feature of QPs. As temperature is lowered, the frequency of

the TO mode decreases, indicating the tendency to a ferroelectric transition, but eventually

saturates at a small but finite value (as low as ω0 ≈ 1 meV for the Eu mode in STO.14–16)

For electrons near the Brillouin zone center, single-TO phonon scattering is suppressed in

a single-band system and in the absence of spin-orbit interaction,17–22 and the lowest-order

process involves two TO phonons (2TO).23–25

We show that the model is characterized by a material-dependent energy scale, E0, sep-

arating the regimes of quasiparticle and nonquasiparticle transport, at lower and higher T ,

respectively. (In STO, E0 is on the order of 100 K). For ω0 � T � E0, the TO mode is in

the classical regime, and a T 2 term in the resistivity arises simply from the square of the

phonon occupation number. A unique feature of the 2TO mechanism is that the quasipar-

ticle scattering rate, 1/τ ∼ T 2/E0, does not depend on the electron energy. This explains

why the observed T 2 scattering rate depends on n only weakly for T � EF and does not

exhibit a crossover at T ∼ EF .
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FIG. 1: Diagrams for the electron self-energy due to scattering by TO phonons. a)

Two-loop two-phonon diagram; b) and c) three- and four-loop “umbrella” diagrams

without crossings; d) and e) examples of diagrams with crossings; f) four-phonon diagram

resulting from adding a P4 term to Eq. (1).

For T � E0, the quasiparticles are not well-defined. By mapping the Dyson equation

for the self-energy onto an exactly soluble problem of supersymmetric quantum mechanics,

we show that transport in this regime is dominated by severely off-shell electrons. In this

regime, the resistivity scales as T 3/2 and violates the MIR limit.

Finally, we show that a more realistic model, which incorporates the T dependence of the

TO soft mode and also includes scattering by longitudinal optical (LO) phonons, explains

the experimental data, if the freeze-out of TO phonons for T < ω0 is ignored. We discuss

the advantages and shortcomings of the 2TO model and propose a number of experiments

that can falsify it.

We consider 3D electrons coupled to an O(3) electric polarization P(r), produced by TO

phonons. Because ∇·P = 0, single-phonon coupling is forbidden and the Hamiltonian starts

with a two-phonon term:24–26

H2TO =
g2
2

∫
d3rP2(r)ψ†(r)ψ(r), (1)

where g2 is the coupling constant (with units of the volume). Other than allowing for TO

modes, we treat the material as isotropic. For a TO mode with dispersion ω2
q = ω2

0 + s2q2
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and polarization eaq,

P(r) =
∑
q,a

eaq√
V
Aqbqe

iq·r + h.c. (2)

where A2
q = [ε0(q)− ε∞]ωq/4π.27 the sum over a = 1, 2 accounts for two (degenerate)

branches of the TO mode, ε0(q) and ε∞ are the static and high-frequency limits of the di-

electric function, respectively, and bq is the bosonic annihilation operator. The diagrams for

the electron self-energy are shown in Fig. 1, where the solid and wavy lines denote the (Mat-

subara) electron and phonon Green’s functions, G(k, εm) and D(q, ωm), respectively, and

solid dots denote the electron-2TO-phonon vertex Γαβ(q) = g2A
2
q(δαβ − qαqβ/q2). Phonons

will be treated as bare ones, hence D(q, ωm) = −2ωq/(ω
2
m + ω2

q).

We now focus on the classical regime, when phonons can be treated as static “ther-

mal disorder”28, which corresponds to setting ωm = 0 in the phonon lines. After analytic

continuation iεm → ε+ i0+, diagram a in Fig. 1 yields

Σ(k, ε) =

∫
q

G(k + q, ε)U(q), (3)

where the correlation function of thermal disorder is

U(q) = 2T 2

∫
d3q1
(2π)3

∑
αβ

Γαβ(q1)

ωq1

Γβα(q− q1)

ωq−q1

. (4)

Other diagrams can be treated in a similar manner.

We also assume for now that the material is very close to the quantum-critical point,

so that the gap in the phonon dispersion can be neglected, i.e., ωq = sq. Neglecting also

ε∞ compared to ε0(q) and excluding ε0(q) via the Lyddan-Sachs-Teller (LST) relation,

ε0(q) = Ω2
0/ω

2
q, and integrating over q1, we obtain

U(q) =
3π

2m∗q

T 2

E0

with E0 ≡
64π3s4

m∗g22Ω4
0

, (5)

where E0 is characteristic energy scale of the model. The 1/q scaling of U(q) (or 1/r2 scaling

is real space) will be crucial in what follows.

For T � E0, thermal disorder is weak. This is the quasiparticle regime, when diagram

Fig. 1a with G replaced by its free-electron form, G0(k, ε) = (ε − ξk + µ + i0)−1 with

ξk = k2/2m∗, gives the leading-order result. Accounting also for a transport correction, we

obtain the standard result for the transport scattering rate

1

τ
= 2π

∫
d3q

(2π)3
δ(ξk+q − ξk)U(q)(1− cos θ), (6)
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where θ is the angle between k and k + q. (The difference between the quantum and

transport rates is insignificant because our thermal disorder is relatively short-ranged; as a

result, the two rates differ only by a factor of 2/3.)

In general, τ depends on the electron energy, ξk, via the electron density of states. This

is the reason why, for example, the resistivity of a semiconductor due to acoustic phonon

scattering scales as T for T � EF and as T 3/2 for T � EF . Our case of U(q) ∝ 1/q is,

however, special: the 1/q factor cancels out with the density of states, and the result does

not depend on ξk. Evaluating also diagrams b and c, we obtain

1

τ
=
T 2

E0

− 1.24
T 3
√
m∗

kE
3/2
0

+O

(
T 5m∗3/2

k3E
5/2
0

)
. (7)

The leading term in Eq. (7) is the most relevant one for the experiment: because it does

not depend on ξk, its thermal average does not depend on the statistics of charge carriers,

and the corresponding resistivity

ρ =
m∗

ne2
T 2

E0

(8)

scales as T 2 regardless of whether T is lower or higher than EF . From the data, we extract

E0 = 209 K in STO at n = 4 × 1017 cm−3.29 Using the known parameters of the phonon

spectrum30 (s = 6.6 × 105 cm/s and Ω0 = 194.4 meV) and m∗ = 1.8m0,
31 we find that

E0 = 209 K corresponds to g2 = 0.60a30, where a0 = 3.9 Å is the STO lattice constant. This

is close to an earlier estimate24,25 of g2 = 1.0a30.

Strong thermal disorder (T � E0) corresponds to a non-quasiparticle regime. Since

EF � E0 for the relevant range of electron number densities, we will consider the non-

degenerate case only. According to Eq. (7), 1/τ becomes comparable to the electron energy

(T ) at T ∼ E0. If TO scattering is treated as purely elastic, the condition Tτ ∼ 1 should

indicate the onset of Anderson localization. However, small but finite energy transfers give

rise to dephasing, which turns out to be strong enough to prevent localization. Indeed, in

a typical scattering event electron energy is changed by δε ∼ kT s, where kT ∼
√
m∗T is

the thermal electron momentum. This corresponds to diffusion along the energy axis with

a diffusion coefficient Dε ∼ (δε)2/τ ∼ m∗s2T 3/E0. The phase-breaking time τφ can be

estimated from the condition that the phase accumulated during τϕ is on the order unity,32

i.e., ∆φ = ∆ετφ = (Dετφ)1/2τφ ∼ 1 or τφ ∼ (E0/m
∗s2)1/3/T . We see that τφ becomes

comparable to the elastic time τ ∼ E0/T
2 at T ∼ Tφ = (m∗s2/E0)

1/3E0 � E0, i.e., already
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in the quasiparticle regime, and it is reasonable to assume that localization can be neglected

for all T > Tφ.

We now find the self-energy self-consistently from Dyson equation (3). Relabeling q =

k− k′ and integrating over the angle between k and k′, we obtain

Σ(ξ, ε) = λ

∫ ∞
0

dξ′K(ξ, ξ′)
1

ε̃− ξ − Σ(ξ′, ε)
, (9)

where ε̃ = ε+µ, λ = 3T 2/4πE0, ξ ≡ ξk, ξ′ ≡ ξk′ , and K(ξ, ξ′) =
√
ξ′/ξΘ(ξ− ξ′) + Θ(ξ′− ξ).

At weak coupling (T � E0), when the Green’s function can be replaced by its free-electron

form, ImΣ(ξ, ε) = −πλΘ(ε̃)
[
Θ(ξ − ε̃)

√
ε̃/ξ + Θ(ε̃− ξ)

]
is non-zero only above the bottom of

the band33. We will now show that at strong coupling (T � E0) the threshold in ImΣ(ξ, ε)

moves from ε̃ = 0 to a finite value which depends on the coupling constant. This is an

essentially non-perturbative effect that defines transport in the non-quasiparticle regime.

If a threshold does exist, ImΣ(ξ, ε) must be small right above the threshold. Therefore,

Eq. (9) can be expanded in γε(ξ) ≡ −ImΣ(ξ, ε). On the other hand, ReΣ(ξ, ε) is expected

to be regular near the threshold and to depend on ξ only weakly, so it can be absorbed into

the chemical potential. (Using Kramers-Kronig relation one can show that ReΣ depends on

ξ and ε only logarithmically34.) Assuming that relevant ε̃ < 0, we expand the imaginary

part of Eq. (9) in γε(ξ) as:

γε(ξ) = λ

∫ ∞
0

dξ′K(ξ′/ξ)

[
γε(ξ

′)

(ε̃− ξ′)2
− γ3ε (ξ

′)

(ε̃− ξ′)4

]
. (10)

At first, we drop the cubic term. The linearized integral equation can be transformed into

a “zero-energy Schroedinger equation” for ϕε(ξ) ≡ ξ3/4γε(ξ):
34

[
−∂2ξ + V (ξ)

]
ϕε(ξ) = 0; V (ξ) = −

[
3

16ξ2
+

λ

2ξ(ε̃− ξ)2

]
.

(11)

The threshold is defined as the smallest value of ε̃ at which the zero-energy Schroedinger

equation has a non-trivial solution, which is guaranteed to be the case if the Hamiltonian,

Hϕ = −∂2ξ + V (ξ), is supersymmetric (SUSY).35 This means that Hϕ can be written as

Hϕ = Q†Q, where Q = ∂ξ+W (ξ), Q† = −∂ξ+W (ξ), and W (ξ) is a superpotential satisfying

the Riccati equation W 2(ξ)−W ′(ξ) = V (ξ). It can be verified34 that the Riccati equation is

solved by W (ξ) = −3/4ξ+1/2(ξ−ε̃) if ε̃/λ = −2/3, which is the condition for Hϕ to be of the

SUSY type. This implies that the threshold in the self-energy is located at ε̃ = −2λ/3 ≡ −ε0,
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while the first-order equation Qϕε = 0 yields γε(ξ) = ξ−3/4ϕε(ξ) = C(ε̃)/
√
ξ + ε0. The

function C(ε̃) is found by substituting the last equation in Eq. (10) and retaining the cubic

term. The final result for ImΣ near the threshold reads

ImΣ(ξ, ε) = −
√

(ε0 + ε̃)ε0 S(ξ/ε0), (12)

where

S(x) =

[
42(x+ 1)(2x+ 3)

16x3 + 56x2 + 70x+ 35

]1/2
. (13)

Note that what is relevant for the observables is the threshold in ε̃ rather than in ε

itself. Nevertheless, we need to determine µ, as it is not guaranteed that at strong coupling

electrons are still in the non-degenerate regime. Imposing the constraint of fixed number

density, we find µ = −ε0 − (3T/2) ln(T/EF ).34 Because µ < 0 and |µ| � T , we are indeed

in the non-degenerate regime.

To find the resistivity in the non-quasiparticle regime, we ignore the vertex corrections

of both ladder and Cooperon types for reasons given above. Then

ρ =
3m∗T

2e2n

∫∞
−∞ dε̃e

−ε̃/T ∫∞
0
dξN(ξ)(−)ImG(ξ, ε)∫∞

−∞ dε̃e
−ε̃/T

∫∞
0
dξN(ξ)ξ [ImG(ξ, ε)]2

,

(14)

where N(ξ) = m∗3/2
√

2ξ/π2 is the density of states. The numerator in Eq. (14) comes

from the relation between the chemical potential and number density. The lower limit

in the ε̃-integrals is −ε0, and the Boltzmann factor e−ε̃/T is exponentially large near −ε0.

Therefore, the ε̃ integrals come from the near-threshold region, where the self-energy is given

by Eqs. (12) and (13). Substituting these forms into Eq. (14), we obtain

ρ = 5.6
m∗

ne2

√
Tε0 ∝ T 3/2. (15)

Despite the Drude-like appearance of Eq. (15), its physical content is very different be-

cause transport in this regime is controlled by off-shell electrons with ε̃ ≈ −ε0 and ξ ∼ ε0.

However, if one still chooses to interpret Eq. (15) in a Drude-like way, the corresponding

scattering time τD ∼ E
1/2
0 /T 3/2 is shorter than the Planckian bound, τP = 1/T , for T � E0.

In Supplemental Material,34 we show that the analytic results in Eqs. (8), (12) and (15) are

confirmed by a numerical solution of Eq. (9). In particular, the inset in Fig. 2 shows the

resistivity obtained by substituting a numerical solution of Eq. (9) into Eq. (14).
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We now discuss briefly the role of other diagrams in Fig. 1. For EF � T � E0, the higher-

order “umbrella” diagrams b, c, etc., provide corrections of order
√
T/E0, as specified in

Eq. (7). For T � E0, it is the self-energy near the threshold that matters to transport.

Near the threshold, umbrella diagrams modify scaling function S in Eq. (12) but not the

square-root singularity in ImΣ as a function of ε.34Therefore, these diagrams affect only the

numerical coefficient in Eq. (15) but not the T 3/2 scaling of ρ. Next, diagram e is a vertex

correction to diagram a, which is small by an effective Migdal parameter, m∗s2/E0 ∼ 0.03.36

Finally, diagram f describes a four-phonon process, which gives a subleading correction to

the resistivity for T below the melting temperature.

We now compare the theoretical results to the data for STO, restoring the gap (ω0) in

the phonon dispersion. The T dependence of ω0 is obtained by substituting the measured

ε0(T )29 into the LST relation [above Eq. (5)]. However, due to a partial cancelation be-

tween the T -dependences of ω0 and of the rms electron momentum, the T dependence of

ω0 does not change the results significantly.24,25,34 The 2TO contribution to the resistivity is

described by an interpolation formula which reproduces the analytic results at low and high

T [Eqs. (8) and (15), respectively], with 2TO coupling constant g2 as a fitting parameter. In

the experiment, ρ varies faster than T 2 at higher T : a power-law fit gives ρ ∝ T 2.7−3.6,37–39

An exponent larger than two was conjectured to result from multi-TO-phonon scattering.39

However, we have shown that TO scattering gives a slower than T 2 variation of ρ for T � E0

[cf. Eq. (15)]. An alternative explanation of the faster than T 2 dependence is scattering by

LO phonons.40–43 We adopt the latter model here and include scattering by the 58 meV

LO mode within the Low-Pines approach,44 treating the Fröhlich coupling constant α as a

fitting parameter; details of the fitting procedure are delegated to SM.34

On the low-T side, the 2TO model should give ρ ∝ exp(−ω0/T ) for T � ω0, whereas

the observed resistivity continues to scale down as T 2 up to the lowest T measured (2 K).

Nevertheless, if we extrapolate our model to the region of T ≤ ω0 (where it should not be

applicable), it still provides a surprisingly good fit of the data. A fit obtained in this way is

shown in Fig. 2 for g2 = 0.92a30 and α = 2.3845. This value of g2, obtained from fitting over

the entire range of T , is slightly larger than 0.60a30, obtained by fitting only the T 2 part of

the data. To the best of our knowledge, no ab initio estimate of g2 is currently available and

would be highly desirable. The value of α is higher than α ≈ 0.746 extracted from infrared

reflectivity47,48 and transport at high T (200 < T < 1000 K)40 but consistent with other
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transport measurements in the intermediate temperature range (100 < T < 200 K).42,49
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FIG. 2: Main panel: Resistivity of SrTiO3 (minus the residual value ρ0)
29 (points, red) vs

theory (solid, black), which includes scattering by two TO phonons and by the 58 meV LO

phonon. An extrapolation of the theory to the regime of T < ω0 is shown by the dashed

line. The dash-dotted line is a T 2 fit to the data (shifted for clarity). Inset a): The

temperature dependence of the resistivity predicted by the 2TO model, obtained by a

numerical solution of Eqs. (9) and (14), along with the fits to the asymptotic results. Here,

ρs = m∗E0/ne
2. Inset b) A zoom on the low-temperature region of the main panel.

While we do not have a good answer to the question why the theory, extrapolated to

T < ω0, still appears to describe the experiment, we note that an exponential behavior of

the resistivity is obtained only if the TO mode is sharp. If it is damped (which inelastic

neutron,30,50 THz,51 and microwave52 spectroscopies indicate), the exponential behavior is

replaced by a power-law one; however, the exponent is still larger than two.53 Also, recent

diagrammatic Monte Carlo calculations54 have shown that the onset of exponential behavior

for a Fröhlich polaron is shifted down to lower temperatures due to mass renormalization; a

similar effect can be expected for 2TO polarons.

Finally, we note that the 2TO model provides a falsifiable prediction because the scatter-

ing mechanism in this model is (quasi) elastic. This can be verified by checking if the electron

9



part of the thermal conductivity and the electrical conductivity obey the Wiedemann-Franz

law (if the model is valid, they should) and if the optical conductivity scales with T/ω (it

should not).
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