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We report the observation of low-energy, low-momenta collective oscillations of an exciton-
polariton condensate in a round “box” trap. The oscillations are dominated by the dipole and
breathing modes, and the ratio of the frequencies of the two modes is consistent with that of
a weakly interacting two-dimensional trapped Bose gas. The speed of sound extracted from the
dipole oscillation frequency is smaller than the Bogoliubov sound, which can be partly explained by
the influence of the incoherent reservoir. These results pave the way for understanding the effects
of reservoir, dissipation, energy relaxation, and finite temperature on the superfluid properties of
exciton-polariton condensates and other two-dimensional open-dissipative quantum fluids.

Introduction.— Low-energy collective excitations di-
rectly probe Bogoliubov sound in quantum fluids and
gases, which in turn provides critical information on the
thermodynamic and superfluid properties of these sys-
tems. Propagation of sound in two-dimensional (2D)
quantum fluids [1–5] is particularly interesting, since it
is governed by Berezinskii–Kosterlitz–Thouless (BKT)
rather than Bose-Einstein condensation (BEC) physics.
Furthermore, collective excitations in 2D quantum gases
can reveal quantum corrections to classical symme-
tries [6, 7], and quantum phase transitions [8–10].

2D non-equilibrium condensates of exciton polaritons
(polaritons hereafter) [11–16] exhibit a wide range of phe-
nomena including BKT [17–19] and Bardeen–Cooper–
Schrieffer (BCS) [20–22] physics, as well as superfluid-
like behavior [23–26]. Their collective excitation spec-
trum is complex, and is expected to differ from the Bo-
goliubov prediction for an equilibrium BEC, especially
at small momenta, due to dissipation [27, 28], coupling
to an incoherent excitonic reservoir [29, 30] and finite-
temperature effects. Contrary to expectations, recent
experiments [31–34] revealed an excitation spectrum con-
sistent with Bogoliubov theory. However, these experi-
ments either could not probe the low-momenta region of
the excitation spectrum [32, 33], or were performed in a
near-equilibrium regime [34] without the influence of the
reservoir. Hence, direct access to the low-energy excita-
tions and their damping rates is needed to understand
the influence of nonequilibrium and finite temperature
effects on polariton superfluid dynamics.

In this Letter, we report the observation of low-energy
collective oscillations of a trapped 2D polariton conden-
sate. Using an optically-induced round box trap in the
pulsed excitation regime [35], we create an interaction-
dominated condensate undergoing long-lived “sloshing”

(Fig. 1). The frequency ratio of the two normal modes
of the dynamics, i.e. center-of-mass (dipole) and breath-
ing (monopole) oscillations, is in remarkable agreement
with the theory for a weakly interacting 2D Bose gas in
thermal equilibrium. However, the speed of sound ex-
tracted from the dipole mode frequency is lower than
expected and has a non-trivial dependence on the inter-
action energy, pointing to a strong influence of the inco-
herent reservoir on the low-energy collective excitations.

Experiment.—The polaritons are created in a high-
quality GaAs/AlAs 3λ/2 microcavity sandwiched be-
tween 32(top) and 40(bottom) pairs of distributed Bragg
reflectors with 12 embedded GaAs quantum wells of nom-
inal thickness 7 nm [36]. A high-density condensate is
formed in an optically induced round trap [see Fig. 1(a)]
using an off-resonant pulsed excitation in a geometry sim-
ilar to Ref. [35]. A spatial hole-burning effect [35, 37] en-
sures that the pump-induced trapping potential is box-
like, which is reflected by the sharp edges of the conden-
sate density distribution in the Thomas-Fermi regime, see
Supplemental MateriaI (SM) [38]. Time-resolved spec-
tral imaging of real space (RS) and k-space (KS) dy-
namics is enabled by a streak camera. The condensate
forms in ∼50 ps and then slowly decays, resulting in a
fast rise and slow fall of the time-resolved photolumines-
cence (PL) signal, as shown in Fig. 1(b). Decay of the
condensate density leads to decreasing energy blueshift
∆E associated with the condensate, which results in one-
to-one correspondence between time and the condensate
energy.

The condensate usually decays on a timescale of the
polariton lifetime (∼200 ps), which makes it impossible
to track the slow dynamics of collective oscillations. To
overcome this limitation, we use a high-energy photo-
excitation ∼150 meV above the lower polariton reso-
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FIG. 1. Sloshing interaction-dominated polariton conden-
sate. (a) Time-integrated real space image of the condensate
trapped in a round box potential (dashed line) of the diameter
D = 56 µm. (b) Time-resolved, spatially integrated, normal-
ized PL intensity (blue) and the condensate energy (orange)
measured at the center of the trap. (c) Time-integrated real
space spectrum of the condensate along the y-axis at x ≈ 0.
Dashed line is a guide to the eye indicating the tilted bot-
tom of the optically-induced potential. (d) Time-resolved real
space distribution of the condensate along the x-axis at y ≈ 0.

nance, which produces a large reservoir with a very low
effective decay rate [39] (see SM [38]). The lifetime of the
condensate replenished by this reservoir is much greater
than the polariton lifetime, as evidenced by the long PL
decay time (up to 1.5 ns) [Fig. 1(b)]. This also results in a
bright low-energy tail in the RS spectrum [see Fig. 1(c)].
Slow decay of the condensate is key to our measurement.

Results.— Time-integrated imaging of the condensate
[e.g., Fig. 1(a)] typically washes out all dynamics. In
this work, due to the well-defined time-resolved energy
of the condensate [see Fig. 1(b)], the energy-resolved RS
distribution shown in Fig. 1(c) displays modulations of
the PL intensity, indicating underlying density oscilla-
tions. Indeed, the time-resolved RS distribution, shown
in Fig. 1(d), reveals the spatial density oscillations, while
the KS distribution shows that the majority of the po-
laritons occupy the k ∼ 0 state [38].

It is important to stress that the images in Fig. 1(c,d)
are accumulated over millions of condensation realisa-
tions. The persistent density modulations mean that the
dynamics recurs despite the stochastic nature of the con-
densate formation in every experimental realisation [37].
This recurrence is due to a significant wedge of our micro-
cavity (effective linear potential) [36] oriented along the
diagonal x-y direction, as evidenced by the off-centred
RS image in Fig. 1(a) and the tilted low-energy tail of
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FIG. 2. Snapshots of (a) RS and (b) KS condensate density
distributions at two different times. Dashed lines show the
direction of the microcavity wedge. Time-evolution of the
average (c) position 〈x〉 (black), 〈y〉 (blue) and (d) momentum
〈~kx〉 (black), 〈~ky〉 (blue), extracted from the condensate
density distributions. Red line in (c) corresponds to the time-
dependent amplitude w(t) of the dipole mode in Fig. 3(b).
Red dots in (d) correspond to (m/~)d〈x〉/dt calculated from
(c). Vertical dashed lines correspond to the snapshots in (a,b).

the energy-resolved RS distribution in Fig. 1(c).
To analyze the observed oscillations, we perform

time-resolved tomography on the RS nr(x, y, t) and KS
nk(kx, ky, t) density distributions [38]. The snapshots at
different times [Fig. 2(a,b)] reveal “sloshing” of the con-
densate along the cavity wedge (see Supplemental Movie
[38]). When most of the polaritons are on one side of the
trap, nk is centered at k ≈ 0 [right panels in Fig. 2(a,b)],
corresponding to zero average momentum at the classi-
cal turning point of the confining potential. When the
nr is symmetric, nk is peaked [left panels in Fig. 2(a,b)],
corresponding to a large average momentum. This har-
monic motion is summarized in Fig. 2(c,d), where the
expectation values of position 〈x〉 and momentum 〈~k〉,
are calculated as: 〈x〉 =

∫
xnrdxdy/

∫
nrdxdy and 〈k〉 =∫

knkdkxdky/
∫
nkdkxdky. The behavior of the expec-

tation values is in excellent agreement with the Ehren-

fest’s theorem of quantum mechanics: md〈x〉
dt = 〈~kx〉,

as demonstrated by the overlap of 〈kx〉 (solid black line)
and (m/~)d〈x〉/dt (red dots) in Fig. 2(d). Here, m is the
polariton effective mass at a near-zero energy detuning
between the exciton and the cavity photon [38].

The condensate density distribution obtained from the
experimental RS images indicates that the box trap has
an elliptical rather than circular cross-section, with an
aspect ratio of 1.2. By fitting the edges of the density
distribution with an ellipse with semi-axes a, b [38], we
extract the time evolution of the condensate width shown
in Fig. 3(a). The oscillation frequency is clearly distinct



3

(b) (c) (d) (e)

(a)

FIG. 3. Time-evolution of the semi-axes of the ellipse a
(black) and b (blue) fitted to the condensate density distri-
bution nr(x, y, t). (b,c) Normal modes extracted by PCA.
Red line in (a) corresponds to the amplitude w(t) (in arbi-
trary units) of the PCA mode shown in (c). The amplitude
w(t) for the mode in (b) is shown in Fig. 2(c). (d) Dipole and
(e) breathing modes calculated from theory.

from the average position or momentum in Fig. 2(c,d).
To identify the normal modes of this oscillation, we em-
ploy a principal component analysis (PCA). This model-
free statistical analysis tool [9, 40, 41] allows us to ex-
tract the spatial profile of the normal modes (principal
components) Pc(x, y) and their time-dependent ampli-
tudes wc(t) from the density nr(x, y, t) = nr(x, y) +∑Nt

c=1 wc(t)Pc(x, y), where nr(x, y) is the time average
[38]. The PCA reveals two dominant modes shown in
Fig. 3(b,c). The respective amplitudes w(t), marked by
the red line in Fig. 2(c) and Fig. 3(a), match the oscilla-
tions of the average position and width of the condensate.

The observed dynamics can be understood as a result
of collective excitations of the polariton condensate. In
the homogeneous, steady-state regime, polariton decay
and interaction with the reservoir strongly modifies the
dispersion of excitations at low momenta k < ks [27,
28], where ks is determined by the polariton lifetime [38].
For k > ks, the dispersion recovers its sonic character,
i.e. ω ≈ ck, where c is the speed of sound. The long
polariton lifetime (∼ 200 ps) in our experiment results
in a very small ks ≈ 0.01 µm−1, an order of magnitude
smaller than the momenta corresponding to the observed
oscillations. For the sake of simplicity and in the absence
of a better suited theory, we analyze the oscillations in
the framework of equilibrium quantum hydrodynamics.

The total condensate density can be approximated by
n(x, y, t) = n0(x, y) + δn(x, y, t) where n0 is the ground
state density and δn � n is the density of excita-
tions. This approximation is validated by the low oc-
cupation of the normal modes relative to the condensate,
δN/N ∼ 0.1, extracted from PCA. In a round box trap
of radius R, the density n0 has a flat-top profile in the
Thomas-Fermi limit [35]. Neglecting the sharp edges of
n0, the hydrodynamic equation for the collective excita-

(a) (c)

(b)

FIG. 4. Measurement of the speed of sound. (a) Frequency
of the dipole (black) and breathing (red) modes. Black (red)
dashed line corresponds to the non-interacting dipole (breath-
ing) frequency ωsp

D (ωsp
B ). (b) Ratio of the breathing and

dipole frequencies ωB/ωD. Shaded areas in (a,b) correspond
to the width of the extracted peak from the time-frequency
analysis. (c) Speed of sound extracted from the dipole fre-
quency as as function of blueshift, ∆E, for different excitation
powers above the condensation threshold, Pth ≈ 10.5 mW.
The black dashed line (c = cB/3) and the blue dash-dotted
line (c = c0+c1∆E, where c0 = 0.4 µm ps−1 and c1 = 0.16 µm
ps−1meV−1) are guides to the eye corresponding to the ex-
pected square-root dependence and the observed linear de-
pendence, respectively.

tions can be written as [42] ω2δn = −c2∇2δn. The wave
equation is subject to the boundary conditions ∇δn = 0
at the edge (r = R) and the continuity condition in the
azimuthal direction. The normal modes have the form:

δnl,m ∝ Jm
(ql,mr

R

)
eimφ, (1)

where Jm is the Bessel function of the 1st kind and ql,m is
the l-th root of its derivative J ′m. The indices l,m denote
the radial nodes and the orbital angular momentum of
the mode, respectively, resulting in the dispersion:

ωl,m = cql,m/R. (2)

Of particular interest are the dipole (l=1,m=±1) and
the breathing (l=1,m=0) modes with the spatial profiles
shown in Fig. 3(d,e) (see SM [38] for other modes) and
frequencies ωD ≈ 1.84c/R and ωB ≈ 3.83c/R, respec-
tively. The dipole mode is a “vortex”-like center-of-mass
motion around the trap center but the reduced symmetry
of the elliptical trap results in oscillations along the short
(long) axis of the trap at a slightly higher (lower) fre-
quency. The breathing mode shown in Fig. 3(e) becomes
a mixture of the monopole and quadrupole modes, with
a pronounced oscillation of the condensate width that
does not affect its center of mass. The dominant modes
extracted by PCA [Fig. 3(b,c)] are now readily identified
as the dipole and breathing modes by comparison with
Fig. 3(d,e), and by matching the respective amplitudes
with the observed oscillations in Fig. 2(c) and Fig. 3(a).

A remarkable advantage of a box trap is the depen-
dence of the mode frequencies on the speed of sound,
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Eq. 2, which for a 2D quantum gas is a function of its
thermodynamic properties and the interaction strength
[2, 43]. In order to analyze the frequencies of the two
dominant oscillations, we perform a time-frequency anal-
ysis of the oscillation signals presented in Fig. 2(c) and
Fig. 3(a) using a wavelet synchrosqueezed transform [44].
Fig. 4(a) shows the two extracted down-chirped frequen-
cies (see SM [38] for more details). The low-frequency
mode is extracted from 〈x, y〉 and is therefore due to the
dipole oscillation, while the high-frequency component is
extracted from a, b and is due to the breathing oscillation.

The observed frequencies can be compared to those in
a non-interacting, single-particle (sp) limit, where the os-
cillation is due to the linear superposition of the ground
and excited states with either m=1 (dipole) or m=0
(breathing). These frequencies are plotted as dashed
lines in Fig. 4(a) (see SM [38] for more details), where
we estimate the trap radius R from the running aver-
age of the measured Thomas-Fermi condensate width.
Clearly, the observed frequencies are much higher than
the non-interacting case, the ratio ωB/ωD ≈ 2, shown
in Fig. 4(b), is smaller than the non-interacting limit of
ωsp
B /ω

sp
D ≈ 2.7, and the frequency chirp is reversed. Thus,

the observed oscillation is collective in nature, in contrast
to previously observed non-equilibrium motion of polari-
tons in a ring [45].

The breathing mode is a compressional mode of the 2D
quantum gas, sensitive to the equation of state [43]. For
a 2D weakly interacting Bose gas in an elliptical box trap
with the aspect ratio a/b ≈ 1.2, one expects ωB/ωD ≈ 2
[38]. The ratio ωB/ωD ≈ 2.0 observed in the polariton
condensate [Fig. 4(b)] therefore suggests that it behaves
as a weakly interacting 2D Bose gas in a box trap.

The dipole mode can be used to measure the speed
of sound using the dispersion law, Eq. 2, and assuming
that the condensate is in a quasi-steady state. This is
a reasonable assumption because the condensate decays
slowly, so that there are >10 oscillations per lifetime. At
zero temperature and with negligible quantum depletion,
the speed of sound should be equal to the Bogoliubov
sound cB =

√
gn/m, where µ = gn is the condensate

interaction energy, g is the polariton-polariton interac-
tion strength, n is the polariton density, and m is the
effective mass. The interaction energy in our experiment
can be inferred from the instantaneous blueshift ∆E of
the condensate energy [Fig. 1(b)], provided that it arises
only due to the polariton-polariton interaction [35].

Fig. 4(c) presents the measured speed of sound, c, as
a function of the blueshift, ∆E, for different excitation
powers, where the blueshift is measured with respect to
the polariton energy at k = 0 in the low-density limit
[38]. As expected, the speed of sound decreases with the
diminishing interaction energy (i.e., with time) and its
general behaviour is independent of the excitation power,
which only determines the initial polariton density and
blueshift. The results for different trap sizes and effective

masses [38] show that, at early times, c is independent
of the trap size and decreases with increasing effective
mass. At large blueshifts (or early times), c(∆E) follows
the predicted square-root law but with c ≈ cB/3. Fur-
thermore, when ∆E . 1 meV, this dependence deviates
from the square-root law and becomes linear c ∝ ∆E.

The discrepancy between the measured and predicted
speed of sound at large blueshifts can be attributed to
the presence of the reservoir. In contrast to our previ-
ous work [35], here the reservoir is not fully depleted, as
evidenced by the slow decay of the condensate PL [38].
Therefore the polariton–reservoir interaction contributes
to the measured blueshift, i.e. ∆E = g(n + |X|−2nR),
where nR is the reservoir density, and |X|2 is the exci-
tonic Hopfield coefficient. Consequently, cB =

√
gn/m <√

∆E/m. Given the value for the interaction strength at
near-zero detuning (|X|2 = 1/2) [33, 35], we can estimate
the ratio of densities to be nR/n ≈ 4 at early times and
nR/n ≈ 1.5 at later times [38]. The latter value agrees
with previous measurements under off-resonant [33] and
resonant [32] CW excitation conditions. Therefore, the
observed deviation from the square-root scaling at later
times could indicate that both the reservoir and conden-
sate densities approach a stationary state.

Although the oscillation frequencies ωB,D and their
ratio are in good agreement with the conservative the-
ory, the damping of the excitations is the consequence
of driven-dissipative and finite-temperature effects. The
damping rates estimated from the data in Figs. 2(d)
and 3(a) [38] are γD ∼ 1 ns−1 for the dipole mode
and γB ∼ 2 ns−1 for the breathing mode, resulting in
a Q-factor Q = ω/γ ∼ 60. The damping can be due to
different mechanisms. Decay and driven thermalization
of polaritons leads to damping of the excitations [27–30]
with the rate determined by the polariton lifetime and
the stimulated scattering rate from the reservoir to the
condensate [38]. While the latter is not known, a reason-
able estimate [38] leads to the damping rates on the order
of ns−1, which are similar to the rates observed in the ex-
periment. Similar rates can also arise from excitations of
the excitonic reservoir [27–30] (see SM [38]). Further-
more, the excitations can be damped by scattering with
lattice phonons [46], which results in effective polariton
energy relaxation [35, 47, 48]. A similar relaxation pro-
cess has been shown to damp condensate oscillations in
conservative (cold atomic) systems [51]. However, these
effects cannot fully account for the observed dependence
of the damping rates on the momentum. Interaction with
uncondensed, thermal polaritons, which are observable in
high quality samples and have an effective temperature
of T ∼10 K [33, 49], such that kBT ∼ gn � ~ωB,D, can
lead to momentum-dependent Landau damping [3, 4, 50].
The measured Q-factors of the two modes are similar to
those reported in previous studies of Landau damping of
collective oscillations in a conservative 2D Bose gas in
the collisionless regime [1, 3, 4]. Indeed, our condensate
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is in the interaction-driven collisionless rather than the
hydrodynamic regime [3] because the effective collision
frequency [52] Ω ∼ 0.1 − 1 ns−1 is much smaller than
ωB,D [38].

Conclusion.—We have observed collective oscillations
of a polariton condensate in a box trap. The oscilla-
tions are dominated by the dipole and breathing modes,
with the ratio of frequencies well described by a model
of 2D weakly interacting bosons. The speed of sound
determined from the dipole frequency is lower than the
Bogoliubov sound, assuming the condensate blueshift is
only due to polariton-polariton interaction. This discrep-
ancy points to the significant influence of the reservoir.

Our future work will focus on selective excitation of
collective modes by pulsed perturbation of a steady-state
condensate. This will allow us to relate the dispersion of
excitations [33] to the measured speed of sound, deter-
mine the momentum dependence of the damping rates,
and identify the dominant damping mechanism.

Our study paves the way for further investigations of
the collective excitations of polariton condensates, which
are essential for better understanding of the driven-
dissipative and finite temperature effects [3, 4, 53] on
the superfluidity of 2D non-equilibrium systems. Precise
measurements of the breathing mode frequency can lead
to experiments on quantum corrections beyond the mean-
field approximation [6, 7], and enable tests of a crossover
between the quantum phases of polariton systems.
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