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Braginskii extended magneto-hydrodynamics is used to model transport in collisional astrophysi-
cal and high energy density plasmas. We show that commonly used approximations to the α⊥ and
β⊥ transport coefficients [e.g. Epperlein and Haines, Phys. Fluids 29, 1029 (1986)] have a subtle
inaccuracy that causes significant artificial magnetic dissipation and discontinuities. This is because
magnetic transport actually relies on β‖ − β⊥ and α⊥ − α‖, rather than α⊥ and β⊥ themselves.
We provide fit functions that rectify this problem and thus resolve the discrepancies with kinetic
simulations in the literature. When implemented in the Gorgon code, they reduce the predicted
density asymmetry amplitude at laser ablation fronts. Recognizing the importance of α⊥ − α‖ and
β‖ − β⊥, we re-cast the set of coefficients. This makes explicit the symmetry of the magnetic and
thermal transport, as well as the symmetry of the coefficients themselves.

Treatment of collisional magnetized plasma with the
electron-ion two-fluid approach leads to the extended
magneto-hydrodynamic (ExMHD) theory of plasma
transport [1]. This has successfully described magnetic
field dynamics in high energy density (HED) plasmas
such as Z-pinches [2], laser plasmas [3, 4], fast ignition fu-
sion concepts [5], dense fusion fuel hot-spots [6] and laser
ablation fronts [7]. ExMHD results in an intricate set
of plasma feedback interactions. Coulomb collisions give
rise to Ohmic resistance. Electron temperature gradi-
ents produce thermoelectric forces, since hotter electrons
are less susceptible to collisions. The resulting magnetic
field advection can greatly exceed that due to the ideal
advection with the fluid [8]. The magnetic field also in-
sulates and deflects the electron heat flow [4], causing
changes to heat confinement and hydrodynamics. Cou-
pling of these effects can result in growth of magnetic
fields at the expense of fluid energy [9], under processes
such as the thermomagnetic instability [10, 11]. ExMHD
effects are also important for magnetic reconnection [12]
in the weakly collisional plasma found in galaxy clusters
and jets. Laboratory experiments emulating these mag-
netized jets [13] and the turbulent dynamo process [14]
also require ExMHD modelling.

Derivation from the kinetic equation [1] showed that
the heat flux, resistive and thermoelectric processes
should be described by tensors dependent on the mag-
netic field B. Typically, simulation codes use an im-
plementation given in ref. [15], in which the electric
field E was numerically calculated from kinetic theory
and then fitted with tabulated functions for the resistive
(α‖, α⊥, α∧) and thermoelectric (β‖, β⊥, β∧) transport
coefficients. Studies using the ExMHD codes Gorgon
[6] and Hydra [16] found that heat insulation from self-
generated magnetic fields can significantly change HED
plasma temperature profiles. Accurate transport coeffi-
cients are therefore of considerable importance.

In this work, we show that, rather than α⊥ and β⊥, the
primary quantities for magnetic transport are α⊥ − α‖
and β‖ − β⊥. Re-casting the coefficient set in terms
of these quantities reveals the inherent symmetry be-

tween the magnetic and heat transport, and the sym-
metry of the coefficients themselves. This was not rec-
ognized in the fit functions of ref. [15], leading to in-
accurate values when calculating α⊥ − α‖ and β‖ − β⊥.
This means that many ExMHD simulations in the liter-
ature, for example those using the Gorgon [6, 7], Hydra
[16, 17] and CTC [18] codes, have suffered fundamen-
tally incorrect magnetic transport, resulting in discon-
tinuities. We provide new fit functions that correctly
reproduce the behavior of detailed kinetic calculations,
and then implement them in the Gorgon code. Com-
parisons show that previous ExMHD simulations have
significantly over-estimated the cross-gradient Nernst ad-
vection and the resulting magnetic dissipation. This then
invalidates the magnetized thermal transport and hydro-
dynamics. For example, the new fits reduce the predicted
asymmetry of inertial confinement fusion laser ablation
fronts.

The magnetic transport is described by the tensor
ExMHD generalized Ohm’s law, given by [1, 15]

E = −u×B +
J×B

nee
− ∇.P e

nee
+
meα.J

nee2τ
−
β.∇Te
e

, (1)

α.J = α‖(J.b̂)b̂ + b̂× (α⊥J× b̂− α∧J), (2)

β.∇Te = β‖(∇Te.b̂)b̂ + b̂× (β⊥∇Te×b̂ + β∧∇Te). (3)

The first term in eqn. (1) is the relativistic transforma-
tion from the ion fluid rest frame at velocity u and, taken
alone, yields ideal MHD. The Ohm’s law also depends on
the electron charge −e, mass me, number density ne and
temperature Te. In quasi-neutral plasma ne =

∑
j njZj ,

where nj is the number density of ion species j with ion-
ization Zj . Electric fields also arise due to currents J,
and due to gradients in the electron pressure tensor P e.
The inertial term has been neglected.

Coulomb collisions cause the final two terms in eqn.
(1). They are decomposed into an orthogonal basis par-

allel and perpendicular to the field direction b̂ = B/|B|.
Each component has its own dimensionless and positive
transport coefficient α⊥(χ, Z̄), α∧(χ, Z̄) and α‖(Z̄) =
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α⊥(0, Z̄). Together these describe the magnetized de-
flection and inhibition of currents. Similarly, the col-
lisional thermal force or thermoelectric term in eqn.
(3) is driven by electron temperature gradients and de-
pends on the coefficients β⊥(χ, Z̄), β∧(χ, Z̄) and β‖(Z̄) =

β⊥(0, Z̄). These are functions of the average ion charge
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where the electron Coulomb collision time is
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3
√
π

4

4πε20m
2
ev

3
th

neZ̄e4 ln(Λ)
. (5)

These expressions contain the electron-ion Coulomb log-
arithm (assumed to be ln(Λ) � 1), the vacuum permit-

tivity ε0 and the electron thermal speed vth =
√

2Te/me.
We now make the standard MHD assumption to retain

only slow oscillations and therefore neglect displacement
current, yielding J = c2ε0∇ × B. Following ref. [19],
manipulation of eqns. (1-3), using the vector components

J = b̂(J.b̂) + b̂× (J× b̂), leads to the simplified form

E =− uB×B +D‖∇×B− ∇.P e

nee
−
β‖

e
∇Te, (6)

uB =u− (1 + δ⊥)
J
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− γ⊥
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me
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τ

me
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(7)

where we have defined the magnetic advection veloc-
ity uB and the resistive magnetic diffusivity D‖ =

mec
2ε0α‖/(nee

2τ). The required α and β combinations
motivate the definition of new transport coefficients [19]

δ⊥(χ, Z̄) =
α∧
χ
, γ⊥(χ, Z̄) =

β∧
χ
, (8)

δ∧(χ, Z̄) =
α⊥ − α‖

χ
, γ∧(χ, Z̄) =

β‖ − β⊥
χ

. (9)

The evolution of B is then found via Faraday’s law
∂tB = −∇ × E. In order of appearance, the terms in
eqn. (6) are then responsible for advection of B with
velocity uB, resistive diffusion of B, the Biermann bat-
tery source term, and the Z-gradient source term [20, 21].
This form of Ohm’s law has the advantage that the sole
appearance of ExMHD effects, that is, the ⊥ and ∧ coef-
ficients, is within the magnetic advection velocity uB in
eqn. (7). The coefficients D‖ and β‖ for the other terms
in eqn. (6) are those from the simpler resistive-MHD
model and they do not depend on B.

In addition to the usual D‖ resistive diffusion, the δ⊥
and δ∧ resistive terms alter the Hall velocity −J/(nee)
in eqn. (7), both in the parallel and transverse direc-
tions. Similarly, the thermal force causes Nernst advec-
tion [22, 23] of B down the temperature gradient and

cross-gradient Nernst advection perpendicular to it, with
coefficients γ⊥ and γ∧ respectively [16, 19, 24–26].

We note that it is not the α‖, α⊥, β‖ and β⊥ coef-
ficients that dictate magnetic transport, but rather the
differences between them. This is recognized in the defi-
nitions in eqn. (9). However, we later show that the fits
from ref. [15] cannot accurately calculate δ∧ and γ∧.

The δ and γ coefficients are fundamental in exposing
the symmetry of the magnetic and thermal transport.
This becomes apparent when eqn. (7) is compared with
the electron heat flow [15]

qe = −neTeτ
me

κ.∇Te −
Te
e
β.J. (10)

The total electron energy flux, including the enthalpy
flux and heat flow, is given by Ueue + P e.ue + qe, where
Ue = mene|ue|2/2 + Tr(P e)/2 is the electron fluid energy
density and ue = u− J/(nee). Taking isotropic electron
pressure with P e = neTeI and assuming |ue| � vth, this
total energy flux can be written as neTeuq, with
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5
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2
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me
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(11)

After replacing the δ and γ coefficients with their β and
κ counterparts, equations (7) and (11) are almost equiv-
alent. The only differences are the greater coefficient of
u and the additional corrections along b̂ in eqn. (11),
whereas magnetic advection along B is not possible.

It turns out that, by defining the δ and γ coefficients
to bring eqns. (7) and (11) into a symmetric form, the
coefficients themselves become symmetric. To show this,
we must calculate them using eqns. (8-9). Using the re-
sults of Braginskii [1], this results in limχ→0 γ∧ = 0, such
that weak magnetic fields are Nernst advected purely
down the temperature gradient. Epperlein and Haines
(EH) [15] later improved the coefficient dependencies for
χ→∞. However, the importance of accurately calculat-
ing α⊥−α‖ and β‖−β⊥ was not recognized in the EH fits,
or in other more recent works [27–29]. As a result, the
EH approximation for β⊥ implies that limχ→0 γ∧ ' 1, re-
sulting in a diagonal total Nernst advection across ∇Te.
Although superficially in agreement with Braginskii, the
EH fits therefore produce fundamentally different mag-
netic transport for χ � 1. There is a similar disagree-
ment for limχ→0 δ∧ and the cross-Hall transport.

We now resolve this discrepancy and provide new
fit functions. Our kinetic results follow those of ref.
[15], in which electrons are treated with the Fokker-
Planck equation, with static ions. The electron distribu-
tion function is expanded [30, 31] into its isotropic and
anisotropic parts via fe(v) = f0(v) + v.f1(v)/v, where
v = |v|. This is valid for plasma with shallow gradi-
ents, such that vthτ |∇Te|/Te � 1 and vthτ |∇ne|/ne �
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FIG. 1: Plots of the kinetic (a) δ∧ cross-Hall and (b) γ∧
cross-Nernst transport coefficients for Z̄ = 1, fitted
using eqns. (13-14) in eqn. (9). The results of Epperlein
and Haines (EH) [15] are only accurate for χ > 1.
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FIG. 2: The symmetric form of the transport
coefficients for Z̄ = 1. (a) The Hall coefficients δ⊥ and
δ∧. (b) The Nernst coefficients γ⊥ and γ∧. (c) The
thermoelectric coefficients β⊥ and β∧. (d) The Spitzer
coefficients κ⊥ and κ∧.

1. This local assumption yields a Maxwellian f0 '
ne/(vth

√
π)3 exp(−v2/v2th). Several authors [32–34] have

examined departures from this assumption. In a uniform
plasma, f1 reaches a steady state given by

e

me

(
E
df0
dv

+ B× f1

)
− 3
√
π

4

v3th
v3

f1
τ

+ Cee = 0. (12)

The electron-ion collision operator in eqn. (12) is a de-
cay of f1 on a timescale τ , whereas the electron-electron
operator Cee is more complex and is given in ref. [31].

Equation (12) was solved numerically via an explicit

iterative method, using fourth order numerical integrals
and finite differences. The uniform velocity grid extended
to 8vth with resolution vth/15. We assumed a fixed elec-
tric field and varied the transverse magnetic field. The
steady state f1 was then numerically integrated [30] to
yield the current J = −(4πe/3)

∫∞
0

f1v
3 dv and heat flux

qe = 5TeJ/(2e) + (2πme/3)
∫∞
0

f1v
5 dv. The α, β, δ and

γ coefficients are then found from eqns. (1-2), (10) and
(8-9), using the fact that ∇Te = u = 0.

The results for δ∧ and γ∧ are presented in Fig. 1,
alongside estimates using the EH fit functions [15] in eqn.
(9). The EH fits are sufficiently accurate to calculate
δ⊥ and γ⊥ with eqn. (8), but should not be used to
calculate δ∧ and γ∧ for χ < 1 with eqn. (9). Some new
fit functions, remaining simultaneously accurate for α⊥,
β⊥, δ∧ and γ∧, are given by

α⊥(χ, Z̄) = α‖ +
χ2 + (1− α‖)χ3

α0 + α1χ+ α2χ2 + χ3
, (13)

β⊥(χ, Z̄) = β‖
1 + 8

9β1χ

(1 + β1χ+ β2χ2 + β3χ3)8/9
. (14)

The dashed green curves in Fig. 1 show the result of
substituting these fit functions into eqn. (9). The αj and
βj fit parameters were found using a Powell optimization
algorithm and are tabulated for arbitrary Z̄ ≥ 1 in the
supplemental material [35]. The unphysical aspect of the

EH fits is a degree of freedom that allows ∂α⊥
∂χ |χ=0 6= 0

and ∂β⊥
∂χ |χ=0 6= 0. This is removed for eqns. (13-14),

which have an enforced zero derivative.
The full set of δ, γ, β and κ transport coefficients are

plotted in Fig. 2 for the case Z̄ = 1. Together with
α‖(Z̄) and β‖(Z̄), these constitute a complete set. It is
now obvious why we have labelled these the symmetric
coefficients, since, in contrast to the (now defunct) α⊥
coefficient, all of them now have the same overall shape.
By defining the δ and γ coefficients to bring eqns. (7)
and (11) into their symmetric form, the set of transport
coefficients also becomes symmetric.

To assess the impact of the new fit functions on ex-
perimental predictions, they were implemented in the
ExMHD code Gorgon [19]. A test problem investi-
gated perturbation smoothing within a direct-drive in-
ertial confinement fusion ablation front. The simulation
used a two-dimensional azimuthally symmetric spherical
coordinate system with resolution 1µm in r and 0.25◦

in θ. The 430µm outer radius CH capsule was irradi-
ated with a 1 ns, 18kJ laser drive, producing intensity
7×1014 Wcm−2. The laser had a ±10% amplitude mode
12 sinusoidal power perturbation along θ, leading to
hydrodynamic imprint and self-generation of azimuthal
magnetic field via the Biermann battery. For these con-
ditions, Hall transport is negligible and uB is dominated
by the ideal and Nernst terms. The simulations used
heat flux limiter 0.06 and multi-group radiation trans-
port. The simulations match those detailed in ref. [26],
albeit with no pre-magnetization.
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FIG. 3: Magnetic field from the 2D ExMHD Gorgon
simulations of a perturbed direct drive laser ablation
front, shown after 1 ns. Simulations used the transport
coefficient fits of (a) Epperlein and Haines (EH) [15]
and (b) this work. Streamlines show the total Nernst
velocity, calculated using the final two terms of eqn. (7).

The results are plotted in Fig. 3. The magnetic field
reaches 40 T after 1 ns, producing electron gyro-radius
' 3µm and maximal χ ' 0.03. The magnetic field has
the same mode 12 profile as the laser perturbation. It is
compressed into the conduction zone because the inwards
Nernst advection exceeds the outwards ideal advection.

The EH fit functions [15] predict a finite cross-gradient

Nernst velocity ' (τ/me)∇Te × b̂ for these weak fields
[Fig. 1b], resulting in diagonal total Nernst streamlines

in Fig. 3a. At spatial positions with |B| = 0, b̂ is un-
defined, yielding a discontinuity. The new fit functions,
on the other hand, predict no such discontinuity and give
predominantly radial total Nernst advection in Fig. 3b.

The effect of this transport on the radially integrated
magnetic field profile is shown in Fig. 4. The EH fits arti-
ficially advect opposite polarity B field regions together.
This results in a discontinuity and a shift of the field pro-
file. This artificial shift has majorly impacted the mag-
netized heat conduction profile in ExMHD simulations,
and is therefore of more than just theoretical interest.
For example, Fig. 5 shows the areal mass density. The
updated magnetic transport predicts a reduced density
perturbation amplitude when compared to the simula-
tion using the EH fits. Since these perturbations are a
seed for implosion fluid instabilities, a major degrada-
tion mechanism, this improved magnetic transport could
significantly affect the overall fusion performance.

In fact, there are many other improvements when com-
paring ExMHD to previous kinetic results. In the 2D
simulations of Hill and Kingham [36] with χ < 0.1, the
cross-gradient Nernst velocity was three orders of magni-
tude less than the standard Nernst velocity, in agreement
with Fig 3b. This remained true even in the denser re-
gions close to the target, where classical transport theory
is expected to hold. A comparative lack of cross-gradient

FIG. 4: Comparison of the radially integrated
azimuthal B field for the two cases, shown after 1 ns.

FIG. 5: Comparison of the radially integrated mass
density for the two cases, shown after 1 ns.

Nernst advection was also observed in kinetic simulations
of the thermomagnetic instability, both with a Vlasov-
Fokker-Planck [11] and particle-in-cell [37] approach.

In summary, we have shown that, once re-cast
into a new set, all of the transport coefficients have
the same behavior. This elucidates the symmetry of
the magnetic and thermal transport in a collisional
magnetized plasma. To accurately calculate magnetic
transport for χ < 1, the fit functions of Epperlein
and Haines [15] must be updated. These previous fit
functions massively over-estimated the cross-Nernst
and cross-Hall advection, causing artificial magnetic
discontinuities and dissipation. The new fits also
explain the apparent discrepancies between kinetic
simulations [36] and ExMHD simulations in the liter-
ature. This more natural and accurate description of
magnetic transport will improve modelling capabilities
for a wide range of magnetized HED plasma experiments.
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