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We solve the advection-diffusion equation for a stochastically stationary passive scalar 6, in con-
junction with forced 3D Navier-Stokes equations, using direct numerical simulations in periodic
domains of various sizes, the largest being 8192°. The Taylor-scale Reynolds number varies in the
range 140 — 650 and the Schmidt number Sc = v/D in the range 1 — 512, where v is the kinematic
viscosity of the fluid and D is the molecular diffusivity of §. Our results show that turbulence be-
comes an ineffective mixer when Sc is large. First, the mean scalar dissipation rate (x) = 2D{|V8)?),
when suitably non-dimensionalized, decreases as 1/log Sc. Second, 1D cuts through the scalar field
indicate increasing density of sharp fronts on larger scales, oscillating with large excursions leading
to reduced mixing, and additionally suggesting weakening of scalar variance flux across the scales.
The scaling exponents of the scalar structure functions in the inertial-convective range appear to
saturate with respect to the moment order and the saturation exponent approaches unity as Sc
increases, qualitatively consistent with 1D cuts of the scalar.

Introduction: A defining property of fluid turbulence,
which plays a critical role in myriad natural and engi-
neering processes, is that it mixes substances extremely
well [1-3]. Thus, any circumstances in which turbulence
loses that property is naturally important to study and
understand. This Letter examines such an instance by
considering mixing of passive scalars with large Schmidt
numbers, S¢ = v/D, where v is the kinematic viscos-
ity of the fluid and D is the molecular diffusivity of the
mixing substance. By analyzing a massive database gen-
erated through state-of-the-art direct numerical simula-
tions (DNS) of the governing equations, we show that
even fully developed turbulence at high Reynolds num-
ber becomes an ineffective mixer when the Sc is rendered
very large.

The rate of mixing of a scalar € is related to the av-
erage ‘dissipation’ rate (x) of its variance, defined as
(x) = 2D(|V0|?). There is a general claim that (x) re-
mains finite even when D — 0 . This claim derives from
the analogy with the mean dissipation rate of turbulent
kinetic energy, which is theorized to be independent of
viscosity when the latter is sufficiently small (v — 0)
[4, 5]. There is concrete empirical evidence that anoma-
lous dissipation of kinetic energy is essentially correct
[6-9]. However, whether the analogous property holds
for scalar dissipation still remains an unresolved question
[10-13]. We show that it does not when Sc is large.

Since the passive scalar is advected by the underlying
velocity field, investigating scalar dissipation anomaly in
principle requires the joint limit of v, D — 0. Specific
practical circumstances on how they approach zero, mo-
tivate two separate scenarios. In the first scenario, we can
take the joint limit such that Sc is a constant and thus the
Reynolds number increases. For this case, there is some
evidence at Sc¢ = O(1) that the scalar dissipation indeed
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FIG. 1. Normalized scalar dissipation rate for Sc¢c = 1, as a
function of microscale Péclet number Pey o 1/D. The data
in (blue) triangles are from [13]; the new data are described
in Table I. The functional form of the fit to the data in [13]
is shown in the legend, with ¢; = 0.36 and ¢z = 31.

becomes independent of D [13]. Figure 1 reaffirms this by
showing that (x), non-dimensionalized by the large-scale
quantity (6%)u’/L, asymptotes to a constant for large
Taylor-scale Péclet number Pey = w'\/D, where v’ is
the rms of velocity fluctuations, A = u'/\/{(0u/0x)?) is
the Taylor microscale, and L is the integral length-scale.

In the second scenario, either v or D approaches zero
faster, such that the Sc¢ — 0 or oo, respectively. Here,
we focus on the latter case of S¢ — oo [14]. The mixing
of scalars with Sc > 1 is characterized by the devel-
opment of very fine scales, even smaller than those in
the velocity field, which are extremely challenging to re-
solve in both experiments and simulations [15, 16]. Con-



sequently, the study of high Sc scalars has been his-
torically limited to very low Reynolds numbers, where
the turbulence is not adequately developed. However,
even at very low Reynolds numbers, there has been
some indication that the asymptotically constant val-
ues of ({x)L)/({6?)u’) become smaller with increasing Sc
[13]. In this Letter, utilizing new state-of-the-art simu-
lations at significantly higher Reynolds numbers (corre-
sponding to fully-developed turbulence), we present new
results which demonstrate conclusively that the normal-
ized scalar dissipation rate approaches zero at large Sc,
rendering turbulence ineffective at mixing. We addition-
ally show that this inefficacy is also carried over to the
larger scales, with important theoretical and practical
implications.

Direct numerical simulations: The data utilized here
are generated using the canonical DNS setup of isotropic
turbulence in a periodic domain [17, 18], forced at large
scales to maintain statistical-stationarity. For the passive
scalar, we simultaneously solve the advection-diffusion
equation in the presence of uniform mean-gradient VO =
(G,0,0) along the Cartesian direction z [19]. For Sc¢ =1,
we utilize the conventional Fourier pseudo-spectral meth-
ods for both the velocity and scalar fields. For Sc¢ = 4
and higher, we utilize a hybrid approach [20-22], where
the velocity field is obtained pseudo-spectrally, focused
on resolving the Kolmogorov length scale 7, and the
scalar field by using compact finite differences on a finer
grid to adequately resolve the smaller Batchelor scale
np = nSc_l/Q. The database is summarized in Ta-
ble I. For many cases, we have performed simulations
with various small-scale resolutions to ensure accuracy
of the statistics [23]. Our runs also meet the resolution
requirements proposed in [24]. However, we note that
while [24] was focused on studying extreme events, the
statistics reported in this work are not as sensitive to
resolution [25, 26].

Reduction of mixing at diffusive scales:
plore the influence of Sc on mean scalar dissipation rate,
(x). We see in Fig. 2 that the asymptotic value of scalar
dissipation continually decreases with Sc. In fact, using
arguments based on functional form of the scalar spec-
trum, the authors of refs. [13, 27] showed that the inverse
scalar dissipation rate ((6%)u’)/({x)L) varies as log Sc. In
order to see this behavior clearly, we plot the inverse dis-
sipation versus log Sc in the inset of Fig. 2. The data are
in excellent agreement with expectations.

The observation that the normalized scalar dissipation
tends to zero in the limit Sc¢ — oo, albeit logarithmi-
cally, suggests that the diffusivity is ultimately incapable
of smoothing the scalar fluctuations and that there is
no mixing at small scales. This picture can be intuitively
understood from a Lagrangian perspective by considering
trajectories of individual scalar particles [28-30]. Phys-
ically, mixing occurs when some local concentration of
scalar particles eventually disperses through the fluid un-

Here we ex-

Ryl Sc| N2 |kmazn| N8 |kmazni | Teim /T
140| 1 | 512° 3 | 5123 3 10
140| 4 | 5123 | 3 |10243 3 90
140| 4 | 5122 | 3 |2048° 6 27
140| 8 | 256% | 1.5 |10243 2 90
140| 8 | 5122 | 3 |10243 2 85
140| 8 | 5122 | 3 |2048° 4 45
140] 16 | 256% | 1.5 [1024%| 1.5 98
140| 16 | 2562 | 1.5 |2048° 3 44
140| 16 | 5122 | 3 [1024%| 1.5 84
140| 16 | 5123 | 3 |2048° 3 56
140( 32 | 5123 | 3 |2048° 2 44
140( 32 | 5123 | 3 |2048° 2 19
140 32 {10243 6 |4096° 4 11
140] 64 | 5122 | 3 [2048%| 1.5 53
140| 64 |1024%| 6 |4096° 3 9
140(128] 5123 | 3 |4096° 2 23
140(256|1024%| 6 |81923 3 6
140(512]1024%| 6 |81923 2 9
240] 1 [1024%] 3 [1024° 3 10
390| 1 |2048%| 3 |20483 3 10
390| 8 |2048%| 3 |81923 4 6
650 1 |4096%| 3 |40963 3 10

TABLE I. Simulation parameters for the DNS runs used in
the current work: the Taylor-scale Reynolds number Ry, the
Schmidt number Sc, the number of grid points for the velocity
and scalar fields, N2 and N, the spatial resolution for the
velocity and scalar fields, respectively kmazn and kmaznp, and
the simulation length Ty, in statistically stationary state in
terms of the large-eddy turnover time Tx. For each case, the
domain length is Lo = 27, and L & Lo/6.

der the combined action of turbulence and molecular dif-
fusion. If we consider two coincident scalar particles, the
diffusivity is necessary to create some finite separation,
thereafter allowing turbulence to take over; however, in
the limit of D — 0, they cannot separate and the action
of turbulence does not manifest [31, 32].

Reduced mizing at larger scales: Figure 3 shows typ-
ical 1D cuts of the scalar field in the direction of the
mean gradient. The upper panel corresponds to Sc =1
and increasing R). The well known ramp-cliff structures
(see [33-36]) are clearly visible in all traces, with disor-
ganized small-scale fluctuations superimposed on them.
With increasing Ry, small-scale fluctuations expectedly
become more conspicuous, but the steep cliffs remain.
In the lower panel, the cuts are for Ry = 140 but vary-
ing Sc. For low to moderate Sc, the ramp-cliff struc-
tures stand out as before, but the superimposed scalar
fluctuations become stronger with increasing Sc. The
large-scale ramp-cliff structures seemingly continue to be
present even at the highest Sc¢ (= 512), but are over-
whelmed by sharp oscillations essentially between the
smallest and largest concentrations, leading to inefficient
mixing at larger scales.

It is worth noting that the scalar dissipation also rep-
resents the scalar variance flux from the large scales
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FIG. 2. Test for scalar dissipation anomaly at Ry = 140 with
increasing Sc. The mean scalar dissipation rate is normalized
as in Fig. 1. The dashed line corresponds to 1/log Sc depen-
dence. The inset shows the inverse of these data versus Sc on
log-linear axes, affirming the log Sc dependence.

through intermediate (inertial) scales to the smallest
(analogous to the energy dissipation representing the flux
of kinetic energy). Since the inertial range dynamics
are not influenced by either v or D, in principle the di-
mensional scalar dissipation can still be non-zero as Sc
increases. However, in contrast the scalar variance in-
creases with Sc (ostensibly through a broadening viscous-
convective range), and thus causes the normalized scalar
dissipation to approach zero. In other words, as Sc is
increased, turbulence responds not only be producing
strong scalar gradients, but even stronger scalar fluctua-
tions, which ultimately lead to inefficient mixing.
Structure functions: To further analyze the reduction
in mixing, we consider the scalar increment A,.0 between
two points separated by distance r, whose moments are
the scalar structure functions. In the so-called inertial-
convective range, the p-th order structure function is ex-
pected to follow a power law of the form ((A,.0)P) ~ rér,
where (, is anomalous with respect to the Kolmogorov
phenomenology (i.e., {, = p/3) [2, 11, 37]. In order to
extract ¢, we have followed an analysis similar to the re-
cent work [25] where (; was obtained by a power law fit in
the inertial-convective range, and higher order moments
were extracted through extended self-similarity [38].
The scaling exponents (;, are plotted against the mo-
ment order in Fig. 4, for Ry > 390. The results for
Ry = 650 and Sc = 1 are virtually identical to those of
[25], and reaffirm that the scalar exponents saturate to
limy, 00 (p = (o ~ 1.2. In comparison, the exponents
for Ry = 390 and Sc = 1 are mostly identical to those
at Ry = 650, but differ somewhat for p > 12 (possibly
due to a slightly smaller scaling range from which the
exponents were extracted). The more important result is
that for Ry = 390 and Sc = 8 the exponents are consis-
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FIG. 3. Typical one-dimensional cuts of the scalar field, nor-
malized by the rms, in the direction of the imposed mean
gradient (x). Lo = 27 is the domain length. The curves in
the upper panel correspond to fixed S¢c = 1 and Ry = 140,
390 and 650 from top to bottom; those in the lower panel are
for fixed Ry = 140 and Sc = 1, 8, 64 and 512 from top to
bottom. The curves are shifted for clarity, as indicated by
dotted horizontal lines.

tently smaller than those for Sc = 1 and tend to saturate
at a smaller value of (o, =~ 1.1. Evidently, the smaller
saturation value for larger Sc invites the question as to
whether it is bounded as Sc¢ — oc.

For a definitive answer, one needs to obtain data for
higher Sc¢ for at least Ry = 650 (at which convincing
scaling exists). But large Sc at Ry = 650 are unlikely to
be attainable anytime soon. We have therefore analyzed
the data at lower Ry = 140, for which inertial range char-
acteristics just begin to manifest [17, 39]. In Fig. 5, we
show the local slope of the structure functions for orders
p =4, 8, 12 and 16 at Sc=32, 128 and 512 (the curves
for different p are shifted for clarity). With increasing
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FIG. 4. The scalar increment exponent, (,, as a function of
the moment order p for Ry and Sc shown in the legend. The
error bars indicate 95% confidence interval. The dotted lines
at 1.2 and 1.1 correspond to plausible saturation values at
Sc =1, 8, whereas the dotted line at 1 is the likely saturation
value at Sc¢ — oo. The dashed line, {, = p/3, corresponds to
the Kolmogorov phenomenology.
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FIG. 5. The local slope of p-th order scalar structure functions
at Ry = 140 and Sc = 32,128 and 512. The curves are shown
for p = 4,8,12 and 16. They are shifted vertically for clarity
and the corresponding dashed lines represent a local slope of

unity.

p, the curves for all Sc progressively get closer to local
slope of unity. If we focus on the region r/n 2 30, which
nominally corresponds to onset of the inertial-convective
range [25], it appears that the local slope for all Sc are
approximately equal for highest p values, and close to
unity—hinting that the high-order exponents saturate at
about 1 as Sc¢ — oo.

Co-dimension result: Finally, we turn to quantifying
the fractal-dimension of sharp scalar fronts and under-
standing how it relates to the saturation exponent. In
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FIG. 6. Compensated plot of N(r), the number of cubes of
side r containing the scalar fronts satisfying the threshold
condition |00/0x| > 0.20rms/np [25]. Curves are shown for
Sc=8, 32, 128 and 512 for Ry = 140. N? is the total number
of grid points. Dr = 3 — ( is the fractal co-dimension. We
set D = 2 corresponding to (s = 1.

[25], the authors found that (., and the box-counting
dimension Dp of the sharp scalar fronts (satisfying the
threshold [00/0x| > 0.20,p,s/nB), add up to the Eu-
clidean dimension of the flow, i.e., (.o + Dr = 3. In that
same spirit, we perform box-counting of the strong scalar
gradients corresponding to sharp fronts, given by N(r)
for various cubes of edge size r. For the saturation expo-
nent (,, = 1, the co-dimension corresponds to Dp = 2.
In Fig. 6, we plot the N (r)/N? compensated by r# with
Dp = 2, for the same cases shown in Fig. 5. Remarkably,
the curves at the highest Sc exhibit an extended plateau
for small scales, consistent with a fractal-dimension of 2.
For large r, all curves are consistent with Drp = 3, as
expected by the space filling nature at large scales. This
consolidates the result that fractal-dimension of sharp
fronts is the co-dimension of the saturation-exponent of
scalar structure functions.

Conclusions: We have demonstrated by several
means that fully-developed turbulence, which enabled ef-
fective mixing at unity Se¢, becomes an ineffective mixer
when Sc is large. The scalar-dissipation-rate, when non-
dimensionalized by large-scale quantities, decreases with
Sc and the scalar field effectively oscillates between the
largest and smallest concentrations without producing
many intermediate levels. We find that the exponents
of scalar structure functions saturate for high-order mo-
ments; the saturation value appears to be bounded by
unity, which is also confirmed by showing that large ex-
cursions in 00 /0x have a co-dimension of 2. These results
form an important ingredient in a fuller understanding
of turbulent mixing, and we note that models like 1D-
Burger s equation [40] and Kraichnan’s passive scalar [41]



have the same behavior of saturated exponents for large
moment orders, leveling off at unity.

From a theoretical perspective, our results invite revi-
sions to existing phenomenology of scalar turbulence (for
large Sc). While we have considered mixing of passive
scalars, it would be instructive to extend these results
to active scalars at large Sec, e.g. salinity in the ocean
(Se ~ 700). In oceanic mixing, it is often assumed that
the turbulent flux of salinity is equal to that of heat, de-
spite the latter occurring at Sc ~ 7. However, the current
study, together with the work of [15], provides strong ev-
idence against it. On a related note, it has been shown
in a subsequent analysis [42] that the results reported
here are seemingly connected to a Sc-correction to the
Batchelor length scale, which can play an important role
for both passive and active scalars.
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